41 |
A spatio-temporal matching algorithm for 3D particle tracking velocimetry /Willneff, Jochen. January 2003 (has links)
Zugleich: Diss. Nr. 15276 techn. sc. SFIT Zurich. / Literaturverz.
|
42 |
Automated patient tracking for 3D-navigation with ultrasoundDiakov, Georgi January 2010 (has links)
Zugl.: Diss.
|
43 |
3D parametric intensity models for the localization of 3D anatomical point landmarks and 3D segmentation of human vessels /Wörz, Stefan. January 2006 (has links)
Zugl.: Hamburg, University, Diss, 2006.
|
44 |
Untersuchung der Abbildungseigenschaften eines 3D-Ultraschall-Computertomographen zur Berechnung der 3D-Abbildungsfunktion und Herleitung einer optimierten SensorgeometrieSchwarzenberg, Gregor F. January 2008 (has links)
Zugl.: Karlsruhe, Univ., Diss., 2008 / Hergestellt on demand
|
45 |
3D-flow measurement by stereo imagingEngelmann, Dirk. Unknown Date (has links) (PDF)
University, Diss., 2000--Heidelberg.
|
46 |
SMILES - 3D das weiterentwickelte Konzept zur Codierung dreidimensionaler Molekülstruktur in einer linearen Notation und die programmtechnische Umsetzung in der Software WinSmiles-3D /Bruder, Andreas. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Bielefeld. / Erscheinungsjahr an der Haupttitelstelle : 2003.
|
47 |
Dreidimensionale Skizzen in Erweiterter RealitätLeebmann, Johannes 23 November 2005 (has links) (PDF)
Die Technik der Erweiterten Realität (ER) kann dazu eingesetzt werden, künstliche und natürliche Sinneseindrücke zu einer konsistenten Gesamtwahrnehmung zu verschmelzen. Dabei soll der Nutzer den Eindruck haben, dass die physikalische Welt mit virtuellen Objekten zu einer erweiterten Welt ergänzt wurde. In dieser Erweiterten Welt kann der Nutzer sinnvoll mit den wahrgenommenen Objekten interagieren. In dieser Arbeit wird eine Methode vorgeschlagen, mit der durch den Einsatz der ER-Technik virtuelle Skizzen direkt in die physikalische Welt gezeichnet werden können. Hierzu wird in dieser Abhandlung der Begriff ” dreidimensionale Skizze“ verwendet. Die skizzierte Information soll aber nicht nur zweidimensional, sondern auch dreidimensional repräsentiert werden und somit aus verschiedenen Perspektiven darstellbar sein. Damit man das Objekt aus verschiedenen Perspektiven betrachten kann, braucht man eine dreidimensionale Repräsentation des Objektes. Es handelt sich also nicht um eine zweidimensionale räumliche Skizze eines dreidimensionalen Objektes, sondern um eine dreidimensional repräsentierte Skizze eines räumlichen Objektes. Ein Anwendungsbereich für dreidimensionale Skizzen ist die Erfassung von Lageinformation nach Katastrophen. Die dreidimensionale Skizze soll die zweidimensionale Zeichnung als Lagekarte bzw. Lageskizze ergänzen. Mit Hilfe von Kartenmaterial lassen sich eingesetzte Kräfte, Infrastruktur, gefährdete Objekte, Gefahrenentwicklung, Schäden und Sonstiges in Beziehung bringen. Die bisherigen Verfahren zur Generierung von Skizzen in einer ER-Umgebung sind nicht für den Einsatz beim Katastrophenmanagement geeignet. Es wird deshalb eine neue Methode vorgestellt, mit der Geometrien in die physikalische Welt skizziert werden können und damit während des Einsatzes vor Ort Lageskizzen angefertigt werden können. Es wird gezeigt, wie diese dreidimensionalen Daten mit anderen Informationen in ein Gesamtkonzept zum Wissensmanagement bei Katastrophen integriert werden können. Ein ER-System für ausgedehnte Einsatzgebiete benötigt Sensoren, die für den gesamten Einsatzbereich Position und Orientierung liefern. Für diese Arbeit wird die Position durch ein GPS erfasst und die Orientierung mit einem Inertialnavigationssystem (INS) bestimmt. Die Verschmelzung der Bilder von physikalischer und virtueller Welt erfolgt mithilfe einer Durchsichtdatenbrille oder mithilfe von Bildern einer Videokamera, die mit computergenerierten Bildern überlagert werden. Neben dem mathematischen Modell ist es notwendig die stochastischen Eigenschaften der Komponenten zu kennen. Zur Bestimmung der Genauigkeit des INS wurde eine Methode entwickelt, die das Fehlerverhalten des INS abschätzen kann, ohne dass zusätzliche Geräte zur Bestimmung notwendig sind. Zur Abschätzung der Fehler wird ausgenutzt, dass sich der Sensor um eine feste Achse drehen muss, wenn er auf einer ebenen Oberfläche aufgesetzt und gedreht wird.Die Herausforderung der Kalibrierung der verwendeten Konfiguration besteht darin, dass das mathematische Modell durch nicht-lineare Gleichungssysteme beschrieben wird, die nicht in einem Schritt lösbar sind. Das Gleichungssystem des mathematischen Modells ist eine Erweiterung des Gleichungssystems einer Bündelblockausgleichung. Die Bündelblockausgleichung ist für den Fall der perspektiven Abbildung ein nicht-lineares Gleichungssystem. Da die Konvergenz von Lösungsverfahren für dieses Gleichungssystem von verschiedenen Faktoren abhängen, wie z. B. der Zahl der Unbekannten, der Konfiguration der Aufnahmen, der Wahl der Näherungswerte, werden in der Literatur mehrere verschiedene Lösungsstrategien für die Bündelblockausgleichung vorgeschlagen. Die in dieser Arbeit beschriebene Methode nutzt aus, dass die Konvergenz von der Struktur des mathematischen Modells abhängt. Zur Beschreibung von Strukturübergängen von einem mathematischen Modell in ein anderes wird eine neue Notation vorgeschlagen, die geeignet ist den gesamten Kalibriervorgang formal vollständig darzustellen. Es werden für alle Teilschritte und geschätzten Parameter die erreichbaren Genauigkeiten, die empirisch ermittelt wurden, angegeben. Damit das Gezeichnete in der bewegten Anzeige sichtbar gemacht werden kann, müssen die gemessenen Bildpunkte ständig der Bewegung nachgeführt und in neue Anzeigekoordinatensysteme transformiert werden. Gäbe es für die gemessenen Bildpunkte dreidimensionale Objektkoordinaten, dann wäre die Transformation leicht zu berechnen. Doch anfangs verfügt man lediglich über zweidimensionale Bildkoordinaten. In der Literatur findet man für diese Problemstellung keine Lösungen. Für diese Arbeit wurde deshalb eine Näherungsmethode entwickelt, mit der die Bildpunkte des gezeichneten Gesamtbildes der Bewegung des Benutzers nachgeführt werden können, ohne dass dreidimensionale Koordinaten bekannt sind. Zur Berechnung der dreidimensionalen Koordinaten des Gezeichneten muss die Skizze aus mehreren Perspektiven gezeichnet werden. Im Gegensatz zu vorhandenen Ansätzen können mit der Methode dieser Arbeit polygonale Skizzenelemente berührungsfrei aus der Distanz konstruiert werden. Beim Konstruieren von dreidimensionalen Skizzen werden Polygone im Objektraum beobachtet. Die gemessenen Punkte, die die Polygone beschreiben, liegen nicht mehr in einer Bildebene, da sich der Betrachter während des Skizzierens frei im Raum bewegen können soll. Von mindestens zwei verschiedenen Orten aus zeichnet man mit der Maus Polygonpunkte in die Anzeige. Jede im Bildraum abgetastete Kurve beschreibt eine andere räumliche Kurve im Objektraum. Dabei entsteht ein erster Fehler bei der Diskretisierung der Raumkurve durch die Wahl bestimmter Stützpunkte, die diese Kurve repräsentieren. Eine weitere Art von Fehlern entsteht durch fehlerbehaftete Sensormessungen und Fehler in den Bildpunktkoordinaten. Darüber hinaus wird jedoch ein weit größerer Fehler dadurch verursacht, dass der Zeichner sich nicht mehr genau an die Punkte erinnert, entlang derer er die Kurve skizziert hat, da kein Polygon, das in den physikalischen Raum gezeichnet wird, sich auf den gleichen physikalischen Ort bezieht. Es entstehen also mindestens zwei Bündel von Strahlen und jedes Strahlenbündel beschreibt eine Fläche, auf der eine Vielzahl von Polygonen liegen kann. Durch Minimierung von Polygondistanzen wird der Verlauf der beobachteten Polygone im physikalischen Raum festgelegt. Die vorgeschlagenen Verfahren werden an verschiedenen Beispielen geprüft. Die Ergebnisse der Tests werden diskutiert. Abschließend wird der weitere Entwicklungsbedarf aufgezeigt.
|
48 |
Computergestützte 3D-Rekonstruktionen und stereologische Untersuchungen an Thalamus und Striatum von normalen und pathologisch veränderten Gehirnen des Menschen / Computer assisted 3D-reconstructions and stereological investigations of thalamus and striatum of normal and pathological changed human brainsMüller, Kerstin Anni January 2007 (has links) (PDF)
Es wurden insgesamt sieben Gallozyanin-gefärbte Schnittserien durch die rechte oder linke Hemisphäre von zwei Kontrollfällen (männlich, 28 Jahre, rechte Hemisphäre, weiblich, 65 Jahre, linke Hemisphäre), einem Fall mit Megalenzephalie (männlich, 48 Jahre, linke Hemisphäre), einem Fall von M. Little (65 Jahre, männlich, linke Hemisphäre), einem Fall von Alzheimerscher Krankheit (85 Jahre, weiblich, linke Hemisphäre) und einem Fall mit Huntingtonscher Krankheit (männlich, 49 Jahre, beide Hemisphären) verwendet. Die zentralen Anteile der Hemisphären mit den kompletten Schnittserien durch Thalami und Corpora striata wurden mit einer digitalen Kamera in Nahaufnahmetechnik aufgenommen, mit einem kommerziellen Bildbearbeitungs-programm (Adobe Photoshop 6.0®) aufbereitet und die derart aufbereiteten Bilder am Computer mit einer Computer gestützten 3D-Rekonstruktionssoftware (Amira®) verar-beitet. Ein wesentlicher Schritt in der Bearbeitung besteht in der Abgrenzung von Thalamus und Striatum von den benachbarten Strukturen. Die hohe Schnittdicke von 440 µm erleichterte dabei die zytoarchitektonische Abgrenzung beider Kerngebiete. Anders als erwartet unterliegen auch Serienschnitte mit einer Dicke von 440 µm Schrumpfungsartefakten, die nicht immer auf den ersten Blick erkennbar sind. Aus diesem Grund beschränken sich die 3D-Rekonstruktionen nicht auf das manuelle Abgrenzen von Strukturen. Vielmehr müssen alle Schnitte sorgfältig den Koordinaten des Raumes angepasst, hintereinander in der z-Achse angeordnet und bei Bedarf gedreht und verschoben werden. Die Rekonstruktionssoftware bietet für diese Prozedur eine halbautomatische Unterstützung. Einzelne stark verformte Schnitte mussten aber dennoch teilweise aufwändig der Serie angepasst werden. Amira® bietet vielseitige Möglichkeiten in der Darstellung der räumlich rekonstruierten Schnitte. Durch Interpolation werden die Rohdaten zum Teil stark verändert und die ursprünglich kantigen und eckigen Formen zunehmend geglättet. Diese Glättung ist der Erfahrung/Willkür des Untersuchers anheim gestellt und folglich werden die Grenzen zwischen einer realistischen 3D-Rekonstruktion und einer Fiktion fließend. Neben 3D-Rekonstruktionen lassen sich mit Amira auch die Volumina von Striatum und Thalamus berechnen. Diese Daten wurden mit den stereologisch bestimmten Kernvolumina und Nervenzellzahlen verglichen. Grundsätzlich liegen die mit Amira erhobenen Volumenwerte zwischen 1,4 und 6,65% unter den stereologisch geschätzten Werten. Diese Diskrepanz ist bei der bekannten biologischen Variabilität des menschlichen ZNS akzeptabel und im Vergleich mit Literaturangaben und -abbildungen dürften Form und Größe der rekonstruierten Thalami und Corpora striata der Wirklichkeit weitgehend entsprechen. Die Nervenzellzahlen schwanken dabei in einem weiten Bereich zwischen rund 71 Millionen im Striatum bei Megalenzephalie und weniger als 7 Millionen bei Chorea Huntington. Im Thalamus liegt die Nervenzellzahl zwischen rund 18 Millionen (Kontrollfall) und etwas mehr als 6 Millionen bei dem untersuchten Fall mit M. Little. Berücksichtigt man die vielfältigen physiologischen Verbindungen zwischen Thalamus und Striatum, so lassen die Schwankungen in den Nervenzellzahlen auf komplexe Interaktionen und Defizite bei den untersuchten Fällen schließen. Im Ergebnis unerwartet ist die weitgehende Konstanz in Form und Aussehen von Thalamus und Striatum im Endstadium von Alzheimerscher Demenz und bei einem Fall von M. Little. Offensichtlich stehen globale Atrophie- bzw. Degenerationsprozesse bei der Alzheimerschen Krankheit im Vordergrund mit der Folge, dass Thalamus und Striatum trotz deutlicher Nervenzellausfälle bei erhöhter Zahl von Gliazellen insgesamt nur wenig kleiner werden. Allerdings tat sich bei dem Fall mit M. Alzheimer an der Ventralseite des Thalamus eine Rinne auf, die bei den anderen untersuchten Fällen nicht gefunden und deren Ursache nicht geklärt werden konnte. Dramatisch erschienen die Größen- und Formveränderung des Striatum beim Chorea-Huntington-Fall. Nervenzell- und Gliazellausfälle im Striatum bei Chorea Huntington dürften die ausgeprägten makroskopischen Veränderungen erklären. Die Kombination von Serienschnitttechnik mit hoher Schnittdicke und einer Computer gestützten 3D-Rekonstruktion bietet bisher nie da gewesene und faszinierende Aspekte vom Bau des menschlichen ZNS. Nach Import in spezielle Computersoftware zur Animation von 3D-Modellen eröffnen die 3D-Rekonstruktionen auch neue Aspekte in der Präsentation der vermuteten Funktionsweise des ZNS. Dabei sollte aber in Anbetracht der komplexen methodischen Faktoren immer eine kritische Distanz zu vielfältigen Darstellungsformen am Bildschirm gewahrt bleiben. / In total we investigated seven gallocyanin stained slice series through the right and left hemisphere of two control cases (man, age 28, right hemisphere, female, age 65, left hemisphere), one case of Megalencephaly (man, age 48, left hemisphere), one case of M. Little (man, age 65, left hemisphere), one case of Alzheimers Disease (female, age 85, left hemisphere) and one case of Huntingtons Disease (man, age 49, both hemispheres). The central parts of the hemispheres with the complete slice series through thalamus and striatum were captured with a digital camera and processed with a commercial picture-processing-programme (Adobe Photoshop 6.0®) and the result was further processed to 3D-models with another software (Amira®). One fundamental step in this procedure is the demarcation between thalamus and striatum and their sourrounding cell groups. The high slice thickness of 440 µm makes this much easier. Different from our expactation we found shrinking artefacts even in slices with a thickness of 440 µm, which were not always visible at first sight. For this reason we had to do more than manual demarcation of the structures, e.g. arrangement of all slices in a row in z-axes and rotation of the slices when needed. The reconstruction software can do this semiautomatically, but in some cases we had to do this on our own in a very difficult procedure. Amira® has a lot of possibilities to show the reconstructed slices. The original database is transformated during the reconstruction procedure so that the models are influenced subjective. Besides 3D-reconstructions we can measure the volume of striatum and thalamus with Amira®. We compared this data with the volumes determined with stereological methods and can say that the volumes measured with Amira® lay 1,4-6,65% under the volumes determined with stereological methods. This different is acceptabel in the face of biological variability. The amount of neurons extend from 71 millions in striatum with Megalencephaly to 7 millions in striatum with Huntingtons Disease. In the thalamus it extends from18 millions in a control case to 6 millions in a M.Little case. Unexpected was the constant form and shape of thalamus and striatum in the late stages of neurodegenerative diseases like Alzheimers Disease. We suggest that the undergoing neurons are replaced by glia and so the macroscopical form remains nearly constant. On the other hand we could see dramatically changes in form and size of the striatum in the Huntingtons Disease case. The combination of serial slice technique with high sliche thickness and computer supported 3D-reconstruction offers new and fascinating aspects of the human central nervous system. Knowing the complex methods to get to this reconstructions one should always observe these models critical.
|
49 |
Effiziente 3D Magnetresonanzbildgebung schnell abfallender Signale / Efficient 3D Magnetic Resonance Imaging of fast decaying signalsBreuer [geb. Hemberger], Kathrin R. F. January 2015 (has links) (PDF)
In der vorliegenden Arbeit wird die Rotated-Cone-UTE-Sequenz (RC-UTE), eine 3D k-Raum-Auslesetechnik mit homogener Verteilung der Abtastdichte, vorgestellt. Diese 3D MR-Messtechnik ermöglicht die für die Detektion von schnell abfallenden Signalen notwendigen kurzen Echozeiten und weist eine höhere SNR-Effizienz als konventionelle radiale Pulssequenzen auf. Die Abtastdichte ist dabei in radialer und azimutaler Richtung angepasst. Simulationen und Messungen in vivo zeigen, dass die radiale Anpassung das T2-Blurring reduziert und die SNR-Effizienz erhöht. Die Drehung der Trajektorie in azimutale Richtung ermöglicht die Reduzierung der Unterabtastung bei gleicher Messzeit bzw. eine Reduzierung der Messzeit ohne Auflösungsverlust.
Die RC-UTE-Sequenz wurde erfolgreich für die Bildgebung des Signals des kortikalen Knochens und der Lunge in vivo angewendet. Im Vergleich mit der grundlegenden UTE-Sequenz wurden die Vorteile von RC-UTE in allen Anwendungsbeispielen aufgezeigt. Die transversalen Relaxationszeit T2* des kortikalen Knochen bei einer Feldstärke von 3.0T und der Lunge bei 1.5T und 3.0T wurde in 3D isotroper Auflösung gemessen. Außerdem wurde die Kombination von RC-UTE-Sequenz mit Methoden der Magnetisierungspräparation zur besseren Kontrasterzeugung gezeigt. Dabei wurden die Doppel-Echo-Methode, die Unterdrückung von Komponenten mit langer Relaxationszeit T2 durch Inversionspulse und der Magnetisierungstransfer-Kontrast angewendet.
Die Verwendung der RC-UTE-Sequenz für die 3D funktionelle Lungenbildgebung wird ebenfalls vorgestellt. Mit dem Ziel der umfassenden Charakterisierung der Lungenfunktion in 3D wurde die simultane Messung T1-gewichteter Bilder und quantitativer T2*-Karten für verschiedene Atemzustände an sechs Probanden durchgeführt. Mit der hier vorgestellten Methode kann die Lungenfunktion in 3D über T1-Wichtung, quantitative T2*-Messung und Rekonstruktion verschiedener Atemzustände durch Darstellung von Ventilation, Sauerstofftransport und Volumenänderung beurteilt werden. / In this thesis the Rotated-Cone-UTE-sequence (RC-UTE), a 3D k- space sampling scheme with uniform sampling density, is presented. 3D RC-UTE provides short echo times enabling the detection of fast decaying signals with higher SNR-efficiency than conventional UTE sequences. In RC-UTE the sampling density is adapted in radial and azimuthal direction. It is shown in simulations and measurements that the density adaption along the radial dimension reduces T2-blurring. By twisting the trajectory along the azimuthal direction fewer projections are needed to fulfill the Nyquist criterion. Thereby, undersampling artefacts or the measurement time is reduced without loss of resolution.
RC-UTE has been successfully applied in vivo in cortical bone and the lung. It was shown that the RC-UTE sequence outperforms the standard UTE sequence in all presented applications. In addition, the transversal relaxation time T2* of cortical bone at field strength of 3.0T and the human lung at 1.5T und 3.0T was measured in 3D isotropic resolution. Moreover, the combination of RC-UTE with magnetization preparation techniques for improved image contrast was shown. To this end strategies such as double-echo readout, long T2 suppression by inversion pulses and magnetization transfer contrast imaging were employed.
Furthermore, the application of RC-UTE for 3D functional lung imaging is presented. In order to provide broad information about pulmonary function T1-weighted images and quantitative T2*-maps in different breathing states were simultaneously measured in six healthy volunteers. The presented methodology enables the assessment of pulmonary function in 3D by indicating ventilation, oxygen transfer and lung volume changes during free breathing.
|
50 |
Planung von Schulterprothesen an 3D-CT-Datensätzen: Entwicklung von Messparametern für das Glenoid am anatomischen PräparatStrewe, Claudia January 2009 (has links)
Zugl.: Tübingen, Univ., Diss., 2009
|
Page generated in 0.0699 seconds