• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 2
  • Tagged with
  • 16
  • 16
  • 16
  • 10
  • 9
  • 7
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Stochastic Motion Stimuli Influence Perceptual Choices in Human Participants

Fard, Pouyan R., Bitzer, Sebastian, Pannasch, Sebastian, Kiebel, Stefan J. 22 March 2024 (has links)
In the study of perceptual decision making, it has been widely assumed that random fluctuations of motion stimuli are irrelevant for a participant’s choice. Recently, evidence was presented that these random fluctuations have a measurable effect on the relationship between neuronal and behavioral variability, the so-called choice probability. Here, we test, in a behavioral experiment, whether stochastic motion stimuli influence the choices of human participants. Our results show that for specific stochastic motion stimuli, participants indeed make biased choices, where the bias is consistent over participants. Using a computational model, we show that this consistent choice bias is caused by subtle motion information contained in the motion noise. We discuss the implications of this finding for future studies of perceptual decision making. Specifically, we suggest that future experiments should be complemented with a stimulus-informed modeling approach to control for the effects of apparent decision evidence in random stimuli.
12

An investigation of reach decisions during ongoing action control

Michalski, Julien 08 1900 (has links)
Les études neurophysiologiques de la prise de décision, traditionnellement ancrées dans des principes neuro-économiques, ont évoluées pour inclure une variété d’aires du cerveau. Partant d’abord du lobe frontal associé aux jugements de valeur, le champ s’est élargi pour inclure d’autres types de décisions incluant les décisions perceptuelles et les décisions incarnées qui impliquent notamment les aires sensorimotrices du cerveau. La théorie moderne de la prise de décision modèle l’activité neurale dans ces régions comme une compétition entre les différents stimuli et actions considérés par un individu. Cette compétition est résolue lorsque l’activité neurale associée à un stimulus ou une action choisie atteint un seuil critique. Toutefois, il reste à éclaircir comment ce modèle s’applique aux décisions effectuées alors que l’individu est déjà engagé dans une activité. Dans ce mémoire nous examinons ce type de décision chez des sujets humains dans une tâche de suivi continu. Des cibles « choix » apparaissaient sur un écran pendant que le sujet suivait de la main une cible qui se déplaçait doucement en continu. Le sujet pouvait ignorer ces cibles choix, ou abandonner la cible suivie pour toucher une cible choix, dans quel cas la cible sélectionnée devenait la nouvelle cible à suivre du doigt. Tel qu’attendu, nous avons observé que les sujets favorisaient les cibles plus proches, plus grandes, et les cibles alignées avec l’axe du mouvement. Toutefois nous avons été surpris de constater que les sujets ignoraient les coûts énergétiques du mouvement, tel que modélisés. Un biais pour minimiser les coûts du mouvement fut réintroduis lorsque la tâche fut divisée en séries de mouvements point-à-point, plutôt qu’un mouvement continu. Même si nous ne pouvons expliquer ce résultat surprenant, nous espérons qu’il inspire de futures études utilisant le paradigme expérimental de décision durant l’action. / Neurophysiological studies of decision-making have expanded over decades to involve many brain areas. The field broadened from neuroeconomics, mainly concerned with frontal regions, to perceptual or embodied decision-making involving several sensorimotor areas where neural activity is linked to the stimuli and actions necessary for the decision process. Current models of decision-making envision this neural activity as a competition between different actions that is resolved when enough activity favors one over the other. However, it is unclear how such models can explain decisions often present in natural behavior, where deliberation takes place while already engaged in an action. In this thesis, we examined the choices human subjects made as they were engaged in a continuous tracking task. While they were manually tracking a target on a flat screen, subjects were occasionally presented with a new target to which they could freely choose to switch, whereupon it became the new tracked target. As expected, we found that subjects were more likely to move to closer targets, bigger targets, or targets that were aligned to the direction of movement. However, we were surprised that subjects did not choose targets that minimized energetic cost, as calculated by a biomechanical model of the arm. A biomechanical bias was restored when the continuous movement was broken up into a series of point to point movements. While we cannot yet explain these findings with certainty, we hope they will inspire further studies using decide-while-acting paradigms.
13

A theoretical and experimental dissociation of two models of decision‐making

Carland, Matthew A. 08 1900 (has links)
La prise de décision est un processus computationnel fondamental dans de nombreux aspects du comportement animal. Le modèle le plus souvent rencontré dans les études portant sur la prise de décision est appelé modèle de diffusion. Depuis longtemps, il explique une grande variété de données comportementales et neurophysiologiques dans ce domaine. Cependant, un autre modèle, le modèle d’urgence, explique tout aussi bien ces mêmes données et ce de façon parcimonieuse et davantage encrée sur la théorie. Dans ce travail, nous aborderons tout d’abord les origines et le développement du modèle de diffusion et nous verrons comment il a été établi en tant que cadre de travail pour l’interprétation de la plupart des données expérimentales liées à la prise de décision. Ce faisant, nous relèveront ses points forts afin de le comparer ensuite de manière objective et rigoureuse à des modèles alternatifs. Nous réexaminerons un nombre d’assomptions implicites et explicites faites par ce modèle et nous mettrons alors l’accent sur certains de ses défauts. Cette analyse servira de cadre à notre introduction et notre discussion du modèle d’urgence. Enfin, nous présenterons une expérience dont la méthodologie permet de dissocier les deux modèles, et dont les résultats illustrent les limites empiriques et théoriques du modèle de diffusion et démontrent en revanche clairement la validité du modèle d'urgence. Nous terminerons en discutant l'apport potentiel du modèle d'urgence pour l'étude de certaines pathologies cérébrales, en mettant l'accent sur de nouvelles perspectives de recherche. / Decision‐making is a computational process of fundamental importance to many aspects of animal behavior. The prevailing model in the experimental study of decision‐making is the drift‐diffusion model, which has a long history and accounts for a broad range of behavioral and neurophysiological data. However, an alternative model – called the urgency‐gating model – has been offered which can account equally well for much of the same data in a more parsimonious and theoretically‐sound manner. In what follows, we will first trace the origins and development of the DDM, as well as give a brief overview of the manner in which it has supplied an explanatory framework for a large number of behavioral and physiological studies in the domain of decision‐making. In so doing, we will attempt to build a strong and clear case for its strengths so that it can be fairly and rigorously compared to potential alternative models. We will then re‐examine a number of the implicit and explicit theoretical assumptions made by the drift‐diffusion model, as well as highlight some of its empirical shortcomings. This analysis will serve as the contextual backdrop for our introduction and discussion of the urgency‐gating model. Finally, we present a novel experiment, the methodological design of which uniquely affords a decisive empirical dissociation of the models, the results of which illustrate the empirical and theoretical shortcomings of the drift‐diffusion model and instead offer clear support for the urgency‐gating model. We finish by discussing the potential for the urgency gating model to shed light on a number of clinical disorders, highlighting a number of future directions for research.
14

A Bayesian Reformulation of the Extended Drift-Diffusion Model in Perceptual Decision Making

Fard, Pouyan R., Park, Hame, Warkentin, Andrej, Kiebel, Stefan J., Bitzer, Sebastian 10 November 2017 (has links) (PDF)
Perceptual decision making can be described as a process of accumulating evidence to a bound which has been formalized within drift-diffusion models (DDMs). Recently, an equivalent Bayesian model has been proposed. In contrast to standard DDMs, this Bayesian model directly links information in the stimulus to the decision process. Here, we extend this Bayesian model further and allow inter-trial variability of two parameters following the extended version of the DDM. We derive parameter distributions for the Bayesian model and show that they lead to predictions that are qualitatively equivalent to those made by the extended drift-diffusion model (eDDM). Further, we demonstrate the usefulness of the extended Bayesian model (eBM) for the analysis of concrete behavioral data. Specifically, using Bayesian model selection, we find evidence that including additional inter-trial parameter variability provides for a better model, when the model is constrained by trial-wise stimulus features. This result is remarkable because it was derived using just 200 trials per condition, which is typically thought to be insufficient for identifying variability parameters in DDMs. In sum, we present a Bayesian analysis, which provides for a novel and promising analysis of perceptual decision making experiments.
15

A Bayesian Reformulation of the Extended Drift-Diffusion Model in Perceptual Decision Making

Fard, Pouyan R., Park, Hame, Warkentin, Andrej, Kiebel, Stefan J., Bitzer, Sebastian 10 November 2017 (has links)
Perceptual decision making can be described as a process of accumulating evidence to a bound which has been formalized within drift-diffusion models (DDMs). Recently, an equivalent Bayesian model has been proposed. In contrast to standard DDMs, this Bayesian model directly links information in the stimulus to the decision process. Here, we extend this Bayesian model further and allow inter-trial variability of two parameters following the extended version of the DDM. We derive parameter distributions for the Bayesian model and show that they lead to predictions that are qualitatively equivalent to those made by the extended drift-diffusion model (eDDM). Further, we demonstrate the usefulness of the extended Bayesian model (eBM) for the analysis of concrete behavioral data. Specifically, using Bayesian model selection, we find evidence that including additional inter-trial parameter variability provides for a better model, when the model is constrained by trial-wise stimulus features. This result is remarkable because it was derived using just 200 trials per condition, which is typically thought to be insufficient for identifying variability parameters in DDMs. In sum, we present a Bayesian analysis, which provides for a novel and promising analysis of perceptual decision making experiments.
16

Electromechanical Characterization of Organic Field-Effect Transistors with Generalized Solid-State and Fractional Drift-Diffusion Models

Yi Yang (10725198) 29 April 2021 (has links)
<p>The miniaturization and thinning of wearable, soft robotics and medical devices are soon to require higher performance modeling as the physical flexibility causes direct impacts on the electrical characteristics of the circuit – changing its behavior. As a representative flexible electronic component, the organic field effect transistor (OFET) has attracted much attention in its manufacturing as well as applications. However, as the strain and stress effects are integrated into multiphysics modelers with deeper interactions, the computational complexity and accuracy of OFET modeling is resurfacing as a limiting bottleneck.</p><p>The dissertation was organized into three interrelated studies. In the first study, the Mass-Spring-Damper (MSD) model for an inverted staggered thin film transistor (TFT) was proposed to investigate the TFT’s internal stress/strain fields, and the strain effects on the overall characteristics of the TFT. A comparison study with the finite element analysis (FEA) model shows that the MSD model can reduce memory usage and raises the computational convergence speed for rendering the same results as the FEA. The second study developed the generalized solid-state model by incorporating the density of trap states in the band structure of organic semiconductors (OSCs). The introduction of trap states allows the generalized solid-state model to describe the electrical characteristics of both inorganic TFTs and organic field-effect transistors (OFETs). It is revealed through experimental verification that the generalized solid-state model can accurately characterize the bending induced electrical properties of an OFET in the linear and saturation regimes. The third study aims to model the transient and steady-state dynamics of an arbitrary organic semiconductor device under mechanical strain. In this study, the fractional drift-diffusion (Fr-DD) model and its computational scheme with high accuracy and high convergence rate were proposed. Based on simulation and experimental validation, the transconductance and output characteristics of a bendable OFET were found to be well determined by the Fr-DD model not only in the linear and saturation regimes, but also in the subthreshold regime.</p>

Page generated in 0.0879 seconds