• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 17
  • 17
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Earth pressures applied on drilled shaft retaining walls in expansive clay during cycles of moisture fluctuation

Koutrouvelis, Iraklis, 1986- 29 October 2012 (has links)
Estimating the earth pressures applied on drilled shaft retaining walls in expansive clays is challenging due to the soil's tendency to shrink and swell under cycles of moisture fluctuation. While empirical suggestions do exist, significant uncertainty exists regarding the effect of volumetric changes of the soil on the earth pressures. In order to investigate this uncertainty, a fully instrumented drilled shaft retaining wall named in the honor of Lymon C. Reese, was constructed in the highly expansive clay of the Taylor formation. Inclinometers and optical fiber strain gauges were installed in three instrumented shafts and time domain reflectrometry sensors were placed within the soil to measure changes in the moisture content. Nearly two years of monitoring data have been obtained which are used to estimate the earth pressure distribution at different moisture conditions. Processing of the raw strain data was required to eliminate the effects of tension cracks and other microscale factors that caused significant variation in the results. Good agreement was obtained between the processed strain and inclinometer data as the deflected shapes predicted from both monitoring elements were similar. Finally, the earth pressure distribution for six dates that represent different moisture conditions of the Taylor clay were plotted and the results of the strain gauge and inclinometer analysis were consistent. A p-y analysis was also conducted to estimate the range of earth pressures applied on the wall. A triangular earth pressure diagram was used as external load above the excavation level and the equivalent fluid pressure was evaluated by matching the deflected shapes generated from the inclinometer data to those predicted by the p-y model. The results were compared to the empirical values that TxDOT uses for design of similar type of walls in expansive clay. Finally, the side shear and temperature effects on the lateral response of the wall were quantified. A differential linear thermal model was used to evaluate the temperature effects and a t-z analysis was conducted to account for the side shear applied on the wall due to volumetric changes of the soil. It is recommended that their combined effect be considered in the design. / text
2

Landslide Stabilization Using Drilled Shafts in Static and Dynamic Conditions

Erfani Joorabchi, Arash 01 August 2011 (has links)
No description available.
3

Analysis of Statnamic Load Test Data Using a Load Shed Distribution Model

Lowry, Sonia L 28 June 2005 (has links)
In the field of civil engineering, particularly structural foundations, low-cost options and time saving construction methods are important because both can be a burden on the public. Drilled shafts have proven to both lower cost and shorten construction time for large-scale projects. However, their integrity as load-carrying foundations has been questioned. The statnamic load test was conceived in the 1980s as an alternative method of testing these larger, deeper foundation elements. Performing a load test verifies that the load carrying capacity of a foundation is agreeable with the estimated capacity during the design phase and that no significant anomalies occurred during construction. The statnamic test, however, is classified as a rapid load test and requires special data regression techniques. The outcome of available regression techniques is directly related to the available instrumentation on the test shaft. Generally, the more instrumentation available, the more complete results the regression method will produce. This thesis will show that a proposed method requiring only basic instrumentation can produce more complete results using a predictive model for side shear development with displacement during the statnamic test. A driven pile or drilled shaft can be discretized into segments based on the load shed distribution model. Each segment can be analyzed as a rigid body. The total static capacity is then the summation of each segments’ contribution. Further, a weighted acceleration can be generated and used to perform an unloading point analysis.
4

Selected Topics in Foundation Design, Quality Assurance, and Remediation

Winters, Danny 01 May 2014 (has links)
There are over 602,000 bridges in the United States, of which 12.5% are classified as functionally obsolete and 11.2% are structurally deficient. The functionally obsolete bridges will require expansion or replacement to increase the service capacity of the bridge. The structurally deficient bridges will either need remediation of the load carrying elements which are damaged or deteriorated or will need to be replaced completely. Replacement of the bridges means new construction; new construction means better design and quality assurance to meet the 100+ year service life requirement in place now. Rehabilitation of bridges will require better design and quality assurance to increase the current service life of the structure. This dissertation presents new design, testing, and repair methods developed to extend the life of new and existing bridges through pressure grouting, thermal integrity testing of drilled shafts, and the bond enhancement of fiber reinforced polymer (FRP) repair materials bonded to concrete with vacuum bagging and pressure bagging, respectively. Pressure grouting of drilled shaft tips has been used for over five decades to improve the end bearing capacity, but no rational design procedure had ever been published until this study. The research outlined in this dissertation analyzed nine grouted shafts and compared them to standard design procedures to determine the improvement in end bearing. Improvements ranged from 60% to 709% increase in end bearing capacity. From these improvements, a design procedure was developed for pressure grouted drilled shafts. Post construction inspection of drilled shafts relies largely on non-visual techniques dealing with measured concrete quantities, acoustic wave speed or frequency, gamma radiation attenuation and now the internal temperature of the curing concrete. Thermal Integrity Profiling (TIP), developed at USF, utilizes the heat of hydration of curing concrete to evaluate the concrete cover, foundation shape, cage alignment, and concrete mix design performance. This research developed standard test equipment and procedures for thermal integrity testing. Comparing the results of the different types of integrity tests is difficult due to the varied nature of the different tests. The dissertation looked at various shafts constructed across the nation which were tested with thermal and at least one other integrity test method. When compared to acoustic and gamma radiation test results, TIP agreed with 4 of 6 cases for acoustic and 2 of 5 cases using gamma radiation. In the one case were both sonic caliper and inclination data were available, TIP showed good agreement. Vacuum bagging and pressure bagging are techniques for improving the FRP-concrete bond in the repair of partially submerged piles. Prototype vacuum bagging and pressure bagging systems were developed and bond improvement assessed from results of pullout tests on full size piles repaired under simulated tidal exposures in the laboratory. Pressure bagging gave better bond and was found to be simpler because it did not require an airtight seal. A field demonstration project was conducted in which pressure bagging was used in combination with two different glass FRP systems to repair two corroding piles supporting the Friendship Trails Bridge across Tampa Bay. Inspection of the post-cured wrap showed no evidence of air voids.
5

The Evaluation of Hybrid Slurry Resulting from the Introduction of Additives to Mineral Slurries

Yeasting, Kyle Douglas 01 January 2011 (has links)
Drilled shaft construction often requires the use of drill slurry to maintain borehole stability during excavation and concreting. While drill slurry may be composed of fluids ranging from air to petroleum, drilled shaft construction typically makes use of water based drilling fluids. Although clean water may be utilized as a drilling fluid, a premixed slurry consisting of water, minerals, and/or polymers is more commonly used. Florida Department of Transportation (FDOT) specifications require the use of mineral slurry for all primary structures. The slurry resists the intrusion of groundwater, slows the outward migration of drilling fluid from the excavation, and aids in the removal of suspended soil cuttings. The mechanisms by which mineral slurries work are quite different from those of polymer slurries. Due to these differences, it is unclear whether a mineral based slurry, which has been fortified with polymers by manufacturers or enhanced through the addition of polymers in the field, behaves more like a mineral slurry rather than polymer slurry. This thesis provides an overview of the methods used to measure physical slurry parameters of interest. These parameters include density, viscosity, pH, sand content, and filtration control. Methods employed to describe the slurry parameters include tools and instrumentation commonly used in both field and laboratory settings.
6

Thermal Conductivity of Soils from the Analysis of Boring Logs

Pauly, Nicole M. 21 October 2010 (has links)
Recent interest in "greener" geothermal heating and cooling systems as well as developments in the quality assurance of cast-in-place concrete foundations has heightened the need for properly assessing thermal properties of soils. Therein, the ability of a soil to diffuse or absorb heat is dependent on the surrounding conditions (e.g. mineralogy, saturation, density, and insitu temperature). Prior to this work, the primary thermal properties (conductivity and heat capacity) had no correlation to commonly used soil exploration methods and therefore formed the focus of this thesis. Algorithms were developed in a spreadsheet platform that correlated input boring log information to thermal properties using known relationships between density, saturation, and thermal properties as well as more commonly used strength parameters from boring logs. Limited lab tests were conducted to become better acquainted with ASTM standards with the goal of proposing equipment for future development. Finally, sample thermal integrity profiles from cast-in-place foundations were used to demonstrate the usefulness of the developed algorithms. These examples highlighted both the strengths and weaknesses of present boring log data quality leaving room for and/or necessitating engineering judgment.
7

Strut-and-tie model design examples for bridge

Williams, Christopher Scott 16 February 2012 (has links)
Strut-and-tie modeling (STM) is a versatile, lower-bound (i.e. conservative) design method for reinforced concrete structural components. Uncertainty expressed by engineers related to the implementation of existing STM code specifications as well as a growing inventory of distressed in-service bent caps exhibiting diagonal cracking was the impetus for the Texas Department of Transportation (TxDOT) to fund research project 0-5253, D-Region Strength and Serviceability Design, and the current implementation project (5-5253-01). As part of these projects, simple, accurate STM specifications were developed. This thesis acts as a guidebook for application of the proposed specifications and is intended to clarify any remaining uncertainties associated with strut-and-tie modeling. A series of five detailed design examples feature the application of the STM specifications. A brief overview of each design example is provided below. The examples are prefaced with a review of the theoretical background and fundamental design process of STM (Chapter 2). • Example 1: Five-Column Bent Cap of a Skewed Bridge - This design example serves as an introduction to the application of STM. Challenges are introduced by the bridge’s skew and complicated loading pattern. A clear procedure for defining relatively complex nodal geometries is presented. • Example 2: Cantilever Bent Cap - A strut-and-tie model is developed to represent the flow of forces around a frame corner subjected to closing loads. The design and detailing of a curved-bar node at the outside of the frame corner is described. • Example 3a: Inverted-T Straddle Bent Cap (Moment Frame) - An inverted-T straddle bent cap is modeled as a component within a moment frame. Bottom-chord (ledge) loading of the inverted-T necessitates the use of local STMs to model the flow of forces through the bent cap’s cross section. • Example 3b: Inverted-T Straddle Bent Cap (Simply Supported) - The inverted-T bent cap of Example 3a is designed as a member that is simply supported at the columns. • Example 4: Drilled-Shaft Footing - Three-dimensional STMs are developed to properly model the flow of forces through a deep drilled-shaft footing. Two unique load cases are considered to familiarize the designer with the development of such models. / text
8

Advancements in Thermal Integrity Profiling Data Analysis

Johnson, Kevin Russell 17 November 2016 (has links)
Thermal Integrity Profiling (TIP) is a relatively new non-destructive test method for evaluating the post-construction quality of drilled shafts. Therein anomalies in a shaft are indicated by variations in its thermal profile when measured during the curing stages of the concrete. A considerable benefit with this method is in the ability to detect anomalies both inside and outside the reinforcement cage, as well as provide a measure of lateral cage alignment. Similarly remarkable, early developments showed that the shape of a temperature profile (with depth) matched closely with the shape of the shaft, thus allowing for a straightforward interpretation of data. As with any test method, however, the quality of the results depends largely on the level of analysis and the way in which test data is interpreted, which was the focus of this study. This dissertation presents the findings from both field data and computer models to address and improve TIP analysis methods, specifically focusing on: (1) the analysis of non-uniform temperature distributions caused by external boundary conditions, (2) proper selection of temperature-radius relationships, and (3) understanding the effects of time on analysis. Numerical modeling was performed to identify trends in the temperature distributions in drilled shafts during concrete hydration. Specifically, computer generated model data was used to identify the patterns of the non-linear temperature distributions that occur at the ends of a shaft caused by the added heat loss boundary in the longitudinal direction. Similar patterns are observed at locations in a shaft where drastic changes in external boundary conditions exist (e.g. shafts that transition from soil to water or air). Numerical modeling data was also generated to examine the relationship between measured temperatures and shaft size/shape which is a fundamental concept of traditional TIP analysis. A case study involving a shaft from which 24hrs of internal temperature data was investigated and compared to results from a computer generated model made to mimic the field conditions of the shaft. Analysis of field collected and model predicted data was performed to examine the treatment of non-linear temperature distributions at the ends of the shaft and where a mid-shaft change in boundary was encountered. Additionally, the analysis was repeated for data over a wide range of concrete ages to examine the effects of time on the results of analysis. Finally, data from over 200 field tested shafts was collected and analyzed to perform a statistical evaluation of the parameters used for interpretation of the non-linear distributions at the top and bottom of each shaft. This investigation incorporated an iterative algorithm which determined the parameters required to provide a best-fit solution for the top and bottom of each shaft. A collective statistical evaluation of the resulting parameters was then used to better define the proper methods for analyzing end effects. Findings revealed that the effects of non-uniform temperature distributions in drilled shaft thermal profiles can be offset with a curve-fitting algorithm defined by a hyperbolic tangent function that closely matches the observed thermal distribution. Numerical models and statistical evaluations provided a rationale for proper selection of the function defining parameters. Additionally, numerical modeling showed that the true temperature-to-radius relationship in drilled shafts is non-linear, but in most cases a linear approximation is well suited. Finally, analysis of both model and field data showed that concrete age has virtually no effect on the final results of thermal profile analysis, as long as temperature measurements are taken within the dominate stages of concrete hydration.
9

A Model for Continuous Measurement of Drilled Shaft Diameter During Construction

Hajali, Masood 11 January 2013 (has links)
Non-Destructive Testing (NDT) of deep foundations has become an integral part of the industry’s standard manufacturing processes. It is not unusual for the evaluation of the integrity of the concrete to include the measurement of ultrasonic wave speeds. Numerous methods have been proposed that use the propagation speed of ultrasonic waves to check the integrity of concrete for drilled shaft foundations. All such methods evaluate the integrity of the concrete inside the cage and between the access tubes. The integrity of the concrete outside the cage remains to be considered to determine the location of the border between the concrete and the soil in order to obtain the diameter of the drilled shaft. It is also economic to devise a methodology to obtain the diameter of the drilled shaft using the Cross-Hole Sonic Logging system (CSL). Performing such a methodology using the CSL and following the CSL tests is performed and used to check the integrity of the inside concrete, thus allowing the determination of the drilled shaft diameter without having to set up another NDT device. This proposed new method is based on the installation of galvanized tubes outside the shaft across from each inside tube, and performing the CSL test between the inside and outside tubes. From the performed experimental work a model is developed to evaluate the relationship between the thickness of concrete and the ultrasonic wave properties using signal processing. The experimental results show that there is a direct correlation between concrete thicknesses outside the cage and maximum amplitude of the received signal obtained from frequency domain data. This study demonstrates how this new method to measuring the diameter of drilled shafts during construction using a NDT method overcomes the limitations of currently-used methods. In the other part of study, a new method is proposed to visualize and quantify the extent and location of the defects. It is based on a color change in the frequency amplitude of the signal recorded by the receiver probe in the location of defects and it is called Frequency Tomography Analysis (FTA). Time-domain data is transferred to frequency-domain data of the signals propagated between tubes using Fast Fourier Transform (FFT). Then, distribution of the FTA will be evaluated. This method is employed after CSL has determined the high probability of an anomaly in a given area and is applied to improve location accuracy and to further characterize the feature. The technique has a very good resolution and clarifies the exact depth location of any void or defect through the length of the drilled shaft for the voids inside the cage. The last part of study also evaluates the effect of voids inside and outside the reinforcement cage and corrosion in the longitudinal bars on the strength and axial load capacity of drilled shafts. The objective is to quantify the extent of loss in axial strength and stiffness of drilled shafts due to presence of different types of symmetric voids and corrosion throughout their lengths.
10

ANALYSIS OF LATERALLY LOADED DRILLED SHAFTS IN ROCK

Yang, Ke 17 May 2006 (has links)
No description available.

Page generated in 0.0685 seconds