• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Catalyst Development and Control of Catalyst Deactivation for Carbon Dioxide Conversion

Otor, Hope O. January 2020 (has links)
No description available.
2

Generation and Utilization of Organoalkali Reagents via Reduction or Decarboxylation / 還元あるいは脱カルボキシル化を利用した有機アルカリ金属反応剤の発生と利用

Wang, Shuo 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24432号 / 理博第4931号 / 新制||理||1704(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 依光 英樹, 教授 若宮 淳志, 教授 畠山 琢次 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
3

Carbon Dioxide Conversion to Value-Added Products using Microbial Electrosynthesis Cell

AlQahtani, Manal Faisal 11 1900 (has links)
Microbial electrosynthesis (MES) is an emerging biotechnology platform for the conversion of CO2 feedstocks into value-added chemical commodities. In MES, microbial catalysts use the cathode (electrons/ H2) as a sole source of energy for the reduction of CO2. Integrating MES technology with renewable energy sources, such as solar power, to convert CO2 to storable chemicals is an example of a perfect circular economy and a sustainable climate change mitigation strategy. However, many knowledge gaps need to be addressed to scale-up MES as an economically viable chemical production process. Therefore, different in-depth approaches were tested in this dissertation by optimizing the cathode architecture and exploring the saline application to enhance MES performance. A balance between various bio-physicochemical phenomena at the MES cathode, i.e., the three-phase interface between CO2 gas, cathodic-biofilm, and electrolyte, is desirable for efficient microbial electrochemical CO2 capture and utilization. To address this problem, this thesis investigated alternatives to the benchmark carbonbased plane cathode by applying a dual-functioning (cathode as well as a CO2 gas-transfer membrane) electrode architecture on MES performance. High Faradaic efficiencies for CO2 reduction were achieved with this novel cathode architecture. This hollow-fiber electrode architecture was also applied to MES operation in saline conditions (i.e., Saline-MES). Because seawater potentially acts as an endless source of saline electrolyte, and its high electrical conductivity useful to minimize the concentration overpotential losses occurs in MES. However, exploring robust halophilic microbial catalysts with high selectivity towards CO2 reduction to the desired end product(s) is necessary to develop the saline-MES process. Therefore, this thesis investigated natural saline habitats with hyper (Red sea brine pool) and moderate salinity (mangrove and salt marsh sediment) as a source of inoculum. Emphasis was placed on improving new knowledge in the direction of halophilic CO2 reducing communities enrichment using cathode selective pressure in the saline-MES. The fundamental insights demonstrated in this dissertation are useful for further development of MES technology, to bring MES one step closer to full-scale applications, for overcoming the bottlenecks associated with reactor scaling-up related to cathode architecture, strategies for the enrichment of halophilic CO2 reducing microbial communities, and saline-MES process optimization.
4

Zkoumání jaderné funkce interleukinu-1alfa / Dissecting the nuclear function of the interleukin-1alpha

Novák, Josef January 2012 (has links)
Interleukin-1alpha (IL-1alpha) is a well-known proinflammatory mediator acting as a secreted molecule. However, in addition to its ability to activate its membrane-bound receptor, there is growing evidence on its noncanonical nuclear function, which classifies IL-1alpha as a "dual function cytokine". This nuclear action depends on the evolutionary conserved N-terminal domain of IL-1alpha. After proteolytic processing, the N-terminal domain of IL-1alpha translocates into nucleus. Histone acetyltransferase (HAT) complexes were previously identified as nuclear targets of IL-1alpha precursor. However, the specific protein which is responsible for the interaction between IL-1alpha and HAT complexes has not been identified yet. To dissect this interaction, the N-terminal domain of IL-1alpha was produced in yeast. Suitability of this experimental setup for testing the interaction between IL-1alpha and eukaryotic HAT complexes was evaluated in this study. IL-1alpha has been analyzed in this study using bioinformatics approaches as well. Putative amphipatic acidic helixes of IL-1alpha have been characterized. One of the potential binding partners of these domains is protein Ada2. Protein Ada2, mature IL-1alpha and IL-1alpha precursor in fusion with epitopes suitable for affinity purification were produced in...
5

Vehicular Joint Radar-Communication in mmWave Bands using Adaptive OFDM Transmission

Ozkaptan, Ceyhun Deniz January 2022 (has links)
No description available.
6

[en] CONTRIBUTIONS TO ARRAY SIGNAL PROCESSING: SPACE AND SPACE-TIME REDUCED-RANK PROCESSING AND RADAR-EMBEDDED COMMUNICATIONS / [pt] CONTRIBUIÇÕES AO PROCESSAMENTO EM ARRANJOS DE SENSORES: PROCESSAMENTO ESPACIAL E ESPÁCIO-TEMPORAL COM POSTO REDUZIDO E RADARES COM COMUNICAÇÕES INCORPORADAS

ALINE DE OLIVEIRA FERREIRA 17 July 2017 (has links)
[pt] Processamento em arranjos de sensores é uma área com vasta aplicação, tanto civil quanto militar, por exemplo em sonar, radar, sismologia e comunicações sem fio. Por meio de processamento espacial e espácio-temporal é possível melhorar suas funcionalidades e explorar novas possibilidades. Esta área vem atraindo cada vez mais a atenção e os esfor¸cos da comunidade científica, especialmente agora, em que antenas phased-array se estabeleceram como uma tecnologia comercial e madura. Neste contexto, nós tratamos o problema de processamento com posto reduzido em processamento espacial (beamforming) e espácio-temporal de sinais radar e a nova área de radares com função dual de radar e comunicações (dualfunction radar-communications, DFRC), que pode ser resumida na incorporação de mensagens de comunicações nas transmissıes radar como uma tarefa secundária. Nesta tese, nós investigamos a aplicação de um novo esquema de reduções de posto baseado em interpolação e decimação em duas áreas distintas: processamento espacial e processamento espácio-temporal de sinais radar. Este algoritmo para redução de posto nunca havia sido testado nestes ambientes antes e apresentou resultados bastante expressivos. Nós também propomos simplificações para reduzir a complexidade computacional do algoritmo em bemforming. Quanto ao tópico de DFRC, nós propomos dois métodos originais para incorporar modulação de amplitude/fase aos lóbulos laterais do diagrama de irradiação do radar de forma robusta. Os métodos propostos são muito mais simples do que o estado-da-arte e apresentam desempenho superior em termos de robustez e aplicabilidade em operações de tempo-real. Nós ainda provemos várias outras análises, comparações e contribuições a esta nova área. / [en] Array processing is an area with many civilian and military applications, e.g. sonar, radar, seismology and wireless communications. By means of space and space-time processing it is possible to enhance their features and explore new possibilities. This area has been attracting increasingly more attention and gathering more efforts of the science community, especially now, that phased array antennas are established as a commercial and mature technology. Within this context, we address the problem of reduced rank processing in space and space-time radar signal processing and the new area of dual-function radar-communications (DFRC), which may be summarized as embedding communication messages into radar emissions as a secondary task for the radar. In this thesis, we investigate the application of a new joint interpolation and decimation rank reducing scheme in two different areas: beamforming and space-time radar processing. This rank reducing algorithm was never tested within these contexts before and shows impressive results. We also propose simplifications for decreasing the computational complexity of the algorithm in beamforming. In the topic of DFRC, we propose two original robust radar-embedded sidelobe phase/amplitude modulation methods which have simple closed form equations. The proposed methods are much simpler than the state of the art and have superior performance in terms of robustness and real-time applicability.

Page generated in 0.0782 seconds