Spelling suggestions: "subject:"dualbath network"" "subject:"dual_phase network""
1 |
Small-Scale Dual Path Network for Image Classification and Machine Learning Applications to Color QuantizationMurrell, Ethan Davis 05 1900 (has links)
This thesis consists of two projects in the field of machine learning. Previous research in the OSCAR UNT lab based on KMeans color quantization is further developed and applied to individual color channels and segmented input images to explore compression rates while still maintaining high output image quality. The second project implements a small-scale dual path network for image classifiaction utilizing the CIFAR-10 dataset containing 60,000 32x32 pixel images ranging across ten categories.
|
2 |
Evaluation of Methods for Sound Source Separation in Audio Recordings Using Machine LearningGidlöf, Amanda January 2023 (has links)
Sound source separation is a popular and active research area, especially with modern machine learning techniques. In this thesis, the focus is on single-channel separation of two speakers into individual streams, and specifically considering the case where two speakers are also accompanied by background noise. There are different methods to separate speakers and in this thesis three different methods are evaluated: the Conv-TasNet, the DPTNet, and the FaSNetTAC. The methods were used to train models to perform the sound source separation. These models were evaluated and validated through three experiments. Firstly, previous results for the chosen separation methods were reproduced. Secondly, appropriate models applicable for NFC's datasets and applications were created, to fulfill the aim of this thesis. Lastly, all models were evaluated on an independent dataset, similar to datasets from NFC. The results were evaluated using the metrics SI-SNRi and SDRi. This thesis provides recommended models and methods suitable for NFC applications, especially concluding that the Conv-TasNet and the DPTNet are reasonable choices.
|
Page generated in 0.0349 seconds