• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • Tagged with
  • 9
  • 9
  • 7
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Explorations in anaphora resolution in artificial neural networks : implications for nativism

Parfitt, Shan Helen January 1997 (has links)
No description available.
2

The problems of serial order in language:Clustering, context discrimination, temporal distance, and edges / 言語における系列順序情報処理の諸問題:クラスタリング, 文脈弁別, 時間的距離, および両端性

Nakayama, Masataka 23 July 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(教育学) / 甲第19214号 / 教博第177号 / 新制||教||154(附属図書館) / 32213 / 京都大学大学院教育学研究科教育科学専攻 / (主査)准教授 齊藤 智, 教授 楠見 孝, 教授 Emmanuel MANALO / 学位規則第4条第1項該当 / Doctor of Philosophy (Education) / Kyoto University / DGAM
3

Artificial Neural Network in Exhaust Temperature Modelling : Viability of ANN Usage in Gasoline Engine Modelling

Nibras, Musa, Linus, Roos January 2022 (has links)
Developing and improving upon a good empirical model for an engine can be time-consuming and costly. The goal of this thesis has been to evaluate data-driven modelling, specifically neural networks, to see how well it can handle training for some static models like the mass flow of air into the cylinder, mean effective pressure and pump mean effective pressure but also for transient modelling, specifically the exhaust gas temperature. These models are evaluated against the classical empirical models to see if neural networks are a viable modelling option. This is done with five different types of neural networks which are trained. These are the feed-forward neural network, Nonlinear autoregressive exogenous model network, layer recurrent network, long short term memory network and gated recurrent network.The inputs were determined by looking at more simple physical models but also looking at the covariance to determine the usefulness of the input. If the calculation time is small for the specific network, the neural network structure is tested and optimized by training many networks and finding the median/mean result for that specific test.The result has shown that the static models are handled very well by the most simple feed-forward network. For the exhaust temperature, both NARX and Layer recurrent network could predict and handle it well giving results very close to the empirical models and could be a viable option for transient modelling, on the other hand, Long short term memory, gated recurrent network and the feed-forward network had trouble predicting the exhaust gas temperature and returned bad results while training.
4

Redes Neurais Aplicadas à InferÃncia dos Sinais de Controle de Dosagem de Coagulantes em uma ETA por FiltraÃÃo RÃpida / Artificial Neural Networks applied to the inference of dosage control signals of coagulants in a water treatment plant by direct filtrationâ,

Leonaldo da Silva Gomes 28 February 2012 (has links)
Considerando a importÃncia do controle da coagulaÃÃo quÃmica para o processo de tratamento de Ãgua por filtraÃÃo rÃpida, esta dissertaÃÃo propÃe a aplicaÃÃo de redes neurais artificiais para inferÃncia dos sinais de controle de dosagem de coagulantes principal e auxiliar, no processo de coagulaÃÃo quÃmica em uma estaÃÃo de tratamento de Ãgua por filtraÃÃo rÃpida. Para tanto, foi feito uma anÃlise comparativa da aplicaÃÃo de modelos baseados em redes neurais do tipo: alimentada adiante focada atrasada no tempo (FTLFN); alimentada adiante atrasada no tempo distribuÃda (DTLFN); recorrente de Elman (ERN) e auto-regressiva nÃo-linear com entradas exÃgenas (NARX). Da anÃlise comparativa, o modelo baseado em redes NARX apresentou melhores resultados, evidenciando o potencial do modelo para uso em casos reais, o que contribuirà para a viabilizaÃÃo de projetos desta natureza em estaÃÃes de tratamento de Ãgua de pequeno porte. / Considering the importance of the chemical coagulation control for the water treatment by direct filtration, this work proposes the application of artificial neural networks for inference of dosage control signals of principal and auxiliary coagulant, in the chemical coagulation process in a water treatment plant by direct filtration. To that end, was made a comparative analysis of the application of models based on neural networks, such as: Focused Time Lagged Feedforward Network (FTLFN); Distributed Time Lagged Feedforward Network (DTLFN); Elman Recurrent Network (ERN) and Non-linear Autoregressive with exogenous inputs (NARX). From the comparative analysis, the model based on NARX networks showed better results, demonstrating the potential of the model for use in real cases, which will contribute to the viability of projects of this nature in small size water treatment plants.
5

Rede neural recorrente com perturbação simultânea aplicada no problema do caixeiro viajante / Recurrent neural network with simultaneous perturbation applied to traveling salesman problem

Fabriciu Alarcão Veiga Benini 15 December 2008 (has links)
O presente trabalho propõe resolver o clássico problema combinatorial conhecido como problema do caixeiro viajante. Foi usado no sistema de otimização de busca do menor caminho uma rede neural recorrente. A topologia de estrutura de ligação das realimentações da rede adotada aqui é conhecida por rede recorrente de Wang. Como regra de treinamento de seus pesos sinápticos foi adotada a técnica de perturbação simultânea com aproximação estocástica. Foi elaborado ainda uma minuciosa revisão bibliográfica sobre todos os temas abordados com detalhes sobre a otimização multivariável com perturbação simultânea. Comparar-se-á também os resultados obtidos aqui com outras diferentes técnicas aplicadas no problema do caixeiro viajante visando propósitos de validação. / This work proposes to solve the classic combinatorial optimization problem known as traveling salesman problem. A recurrent neural network was used in the system of optimization to search the shorter path. The structural topology linking the feedbacks of the network adopted here is known by Wang recurrent network. As learning rule to find the appropriate values of the weights was used the simultaneous perturbation with stochastic approximation. A detailed bibliographical revision on multivariable optimization with simultaneous perturbation is also described. Comparative results with other different techniques applied to the traveling salesman are still presented for validation purposes.
6

Rede neural recorrente com perturbação simultânea aplicada no problema do caixeiro viajante / Recurrent neural network with simultaneous perturbation applied to traveling salesman problem

Benini, Fabriciu Alarcão Veiga 15 December 2008 (has links)
O presente trabalho propõe resolver o clássico problema combinatorial conhecido como problema do caixeiro viajante. Foi usado no sistema de otimização de busca do menor caminho uma rede neural recorrente. A topologia de estrutura de ligação das realimentações da rede adotada aqui é conhecida por rede recorrente de Wang. Como regra de treinamento de seus pesos sinápticos foi adotada a técnica de perturbação simultânea com aproximação estocástica. Foi elaborado ainda uma minuciosa revisão bibliográfica sobre todos os temas abordados com detalhes sobre a otimização multivariável com perturbação simultânea. Comparar-se-á também os resultados obtidos aqui com outras diferentes técnicas aplicadas no problema do caixeiro viajante visando propósitos de validação. / This work proposes to solve the classic combinatorial optimization problem known as traveling salesman problem. A recurrent neural network was used in the system of optimization to search the shorter path. The structural topology linking the feedbacks of the network adopted here is known by Wang recurrent network. As learning rule to find the appropriate values of the weights was used the simultaneous perturbation with stochastic approximation. A detailed bibliographical revision on multivariable optimization with simultaneous perturbation is also described. Comparative results with other different techniques applied to the traveling salesman are still presented for validation purposes.
7

Evaluation of Methods for Sound Source Separation in Audio Recordings Using Machine Learning

Gidlöf, Amanda January 2023 (has links)
Sound source separation is a popular and active research area, especially with modern machine learning techniques. In this thesis, the focus is on single-channel separation of two speakers into individual streams, and specifically considering the case where two speakers are also accompanied by background noise. There are different methods to separate speakers and in this thesis three different methods are evaluated: the Conv-TasNet, the DPTNet, and the FaSNetTAC.  The methods were used to train models to perform the sound source separation. These models were evaluated and validated through three experiments. Firstly, previous results for the chosen separation methods were reproduced. Secondly, appropriate models applicable for NFC's datasets and applications were created, to fulfill the aim of this thesis. Lastly, all models were evaluated on an independent dataset, similar to datasets from NFC. The results were evaluated using the metrics SI-SNRi and SDRi. This thesis provides recommended models and methods suitable for NFC applications, especially concluding that the Conv-TasNet and the DPTNet are reasonable choices.
8

Анализ корневых причин (RCA) возникновения инцидента методами машинного обучения : магистерская диссертация / Root cause analysis (RCA) of an incident using machine learning methods

Подлягин, А. В., Podlyagin, A. V. January 2023 (has links)
Объект исследования – кибер-физические системы, подверженные различным инцидентам, отказам и сбоям в своей работе. Цель работы – разработка модели машинного обучения для определения корневых причин сбоев в производственной системе, а также исследование возможности использования машинного обучения для определения причин будущих сбоев. Методы исследования: сбор, анализ и синтез данных, сравнение, обобщение, классификация, аналогия, эксперимент, измерение, описание. Результаты работы: разработана и обучена модель машинного обучения для анализа корневых причин инцидентов производственной установки методом классификации на выбранном наборе «сырых» данных небольшого объема с последующей проверкой качества ее работы на тестовых данных. Область применения – обучение модели корневым причинам инцидентов (отказов, сбоев) производственных систем на имеющихся данных с последующим оперативным обнаружением причин аномальной работы систем в тандеме с работой алгоритма по автоматическому обнаружению и прогнозированию аномалий. / The object of research is cyber-physical systems that are susceptible to various incidents, failures and malfunctions in their operation. The goal of the work is to develop a machine learning model to determine the root causes of failures in a production system, as well as to explore the possibility of using machine learning to determine the causes of future failures. Research methods: collection, analysis and synthesis of data, comparison, generalization, classification, analogy, experiment, measurement, description. Results of the work: a machine learning model was developed and trained to analyze the root causes of incidents in a production facility using the classification method on a selected set of small-volume “raw” data, followed by checking the quality of its work on test data. Scope of application: training a model for the root causes of incidents (failures, failures) of production systems using available data, followed by prompt detection of the causes of abnormal operation of systems in tandem with the work of the algorithm for automatic detection and prediction of anomalies.
9

Improving Speech Intelligibility Without Sacrificing Environmental Sound Recognition

Johnson, Eric Martin 27 September 2022 (has links)
No description available.

Page generated in 0.0515 seconds