• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular genetic analysis of a New South Wales muscular dystrophy cohort

Taylor, Peter John, Medical Sciences, Faculty of Medicine, UNSW January 2008 (has links)
Duchenne muscular dystrophy (DMD) is an X-linked lethal condition associated with high morbidity and mortality. There is currently no cure for this disease. Several gene-based therapeutic approaches for treating DMD are currently under development but all are dependent on the knowledge of the causative dystrophin gene mutation. A combined mutation detection approach consisting of a quantitative PCR based analysis and DNA sequencing of the dystrophin gene resulted in a mutation etection rate of 96% in the New South Wales (NSW) DMD cohort. The proportion of exon duplication mutations was twice that generally reported for similar patient opulations. The clinical utility of the combined mutation protocol for DMD carrier testing clarified the carrier status of an additional one-third (33%) of female relatives compared to a conventional approach of biochemical, pedigree and linkage studies. The generally accepted view that two-thirds of mothers of isolated cases of DMD are themselves mutation carriers is challenged. Although this assumption is valid for duplication and DNA sequence mutations, it is not valid for deletion mutations in the NSW cohort. The incidence of new cases of DMD in the New South Wales population was educed from approximately 1 in 3594 live male births to 1 in 6022 live male births over a 25 year period, indicative of a significant effect of the combination of genetic counselling and improved methods of carrier detection over that period. In a study of a cohort of boys with DMD, who had both psychological and mutational analysis, it was shown that mutations affecting the shorter, C-terminal isoforms of dystrophin are associated with decreased mean intellectual function. A hypothesis is presented that mutations within the long 5' untranslated region of the Dp140 isoform are unlikely to significantly affect expression of this brain-expressed isoform. During the course of studying the NSW DMD cohort a family was identified which exhibited X-linkage and a unique clinical presentation involving episodes of severe and prolonged muscle weakness. A novel variant in the pyruvate dehydrogenase E1 alpha subunit (PDHA 1) was identified. The phenotypic effect of this variant is not proven but a body of evidence implicates this as likely to be causative of the observed phenotype.
2

Characterisation and strategic treatment of dystrophic muscle

Laws, Nicola January 2005 (has links)
The mdx mouse is widely used as a model for Duchenne Muscular Dystrophy, a fatal X-linked disease caused by a deficiency of the sub-sarcolemmal protein, dystrophin. This dissertation reports characterisation of the features of dystrophy in the mdx mouse, including parameters such as electrophysiological and contractile properties of dystrophic cardiac tissue, quantitative evaluation of kyphosis throughout the mdx lifespan, and contractile properties of respiratory and paraspinal muscles. Following these characterisation studies, the efficacy of antisense oligonucleotides (AOs) to induce alternative mRNA splicing in mdx skeletal muscles (diaphragm and paraspinal muscles) was evaluated. The left atria of younger (<6 weeks) and older (>15 months) mdx mice showed consistently lower basal forces and responsiveness to increased calcium, while action potential duration was significantly shorter in young mice (3 weeks) and older mice (9 and 12 months) (P<0.05). Cardiac fibrosis increased with age in mdx atria and ventricles and was elevated in young (6-8 weeks) and old (15 months) mdx compared to control mice (P<0.01). This study provided insights into DMD cardiomyopathy, and suggested that very young or old mdx mice provide the most useful models. Mdx mice show thoracolumbar kyphosis like boys with Duchenne Muscular Dystrophy. A novel radiographic index, the Kyphotic Index (KI), was developed and showed that mdx mice are significantly more kyphotic from 9 months of age, an effect maintained until 17 months (P<0.05). At 17 months, the paraspinal and respiratory muscles (latissimus dorsi, diaphragm and intercostal muscles) are significantly weaker and more fibrotic (P<0.05). Administration of AOs at four sites within the diaphragm at 4 and 5 months of age significantly increased twitch and tetanic forces compared to sham treated mdx (P<0.05). However, no difference in collagen was evident and dystrophin was not detected, possibly due to the low concentration of AO utilised. This study suggested that AOs can provide functional improvement in treated skeletal muscles. Monthly injections with AOs into the paraspinal muscles from 2 months to 18 months of age alleviated kyphosis, without significantly altering twitch and tetanic forces of latissimus dorsi, diaphragm and intercostal muscles. There was evidence of less fibrosis in diaphragm and latissimus dorsi muscles (P<0.05) and reduced central nucleation of the latissimus dorsi and intercostal muscles (P<0.05). Again, dystrophin was not detected by immunoblot. These studies indicate that very young and old mdx mice display previously uncharacterised dystrophic features, and are useful models for testing new therapies such as AOs. Low doses of AOs were shown to be safe and efficacious for long-term use, however there remains a need for testing higher concentrations and improved delivery strategies.
3

Cardiac calcium handling in the mouse model of Duchenne Muscular Dystrophy

Woolf, Peter James January 2003 (has links)
The dystrophinopathies are a group of disorders characterised by cellular absence of the membrane stabilising protein, dystrophin. Duchenne muscular dystrophy is the most severe disorder clinically. The deficiency of dystrophin, in the muscular dystrophy X-linked (mdx) mouse causes an elevation in intracellular calcium in cardiac myocytes. Potential mechanisms contributing to increased calcium include enhanced influx, sarcoplasmic reticular calcium release and\or reduced sequestration or sarcolemmal efflux. This dissertation examined the potential mechanisms that may contribute to an intracellular calcium overload in a murine model of muscular dystrophy. The general cardiomyopathy of the mdx myocardium was evident, with the left atria from mdx consistently producing less force than control atria. This was associated with delayed relaxation. The role of the L-type calcium channels mediating influx was initially investigated. Dihydropyridines had a lower potency in contracting left atria corresponding to a redued dihydropyridine receptor affinity in radioligand binding studies of mdx ventricular homogenates (P<0.05). This was associated with increased ventricular dihydropyridine receptor protein and mRNA levels (P<0.05). The function of the sarcoplasmic reticulum in terms of release and also sequestration of calcium via the sarco-endoplasmic reticulum ATPase were investigated. A lower force of contraction was evident in mdx left atria in response to a range of stimulation frequencies (P<0.05) and concentrations of extracellular calcium (P<0.05). However, in the presence of 1 nM Ryanodine to block sarcoplasmic reticular calcium release, increased stimulation frequency caused similar forces to those obtained in control mice suggesting enhanced calcium influx via L-type calcium channels in mdx. Rapid cooling contractures showed a reduced contracture in mdx compared to control in response to cooling. This suggests some dysfunction in SR storage, which may be associated with the delayed relaxation time. Concentration-response curves to inhibitors of the sarco-endoplasmic reticulum showed no difference in function of the enzyme responsible for calcium uptake into the sarcoplasmic reticulum. Although sarco-endoplasmic reticulum ATPase mRNA was upregulated, no functional benefit was evident. This study indicates that a deficiency of dystrophin leads to upregulation of L-type calcium channels that contribute to increased calcium influx, with no functional change in sarcoplasmic reticular sequestration. Upregulation of the influx pathway is a potential mechanism for the calcium overload observed in mdx cardiac muscle.
4

IMPACT OF HEAT THERAPY ON SKELETAL MUSCLE FUNCTION IN A MODEL OF DUCHENNE MUSCULAR DYSTROPHY

Bohyun Ro (11191884) 28 July 2021 (has links)
Current study demonstrated the impact of heat therapy on skeletal muscle function in a model of Duchenne muscular dystrophy (DMD). The aim of this study was to: (1) examine the impact of treatment temperature on the skeletal muscle adaptation in DBA/2J mice; and (2) determine the impact of repeated HT for 3 consecutive weeks on body composition and skeletal muscle function in D2.mdx, a model of DMD. From study 1, we revealed that HT at 39℃ for 3 weeks significantly promoted relative muscle mass of both EDL and soleus muscle in DBA/2J mice. However, from study 2, HT at 39℃ for 3 weeks does not improve muscle function or increase muscle mass in a mouse model of DMD.
5

Modifying function and fibrosis of cardiac and skeletal muscle from mdx mice

van Erp, Christel January 2005 (has links)
Duchenne Muscular Dystrophy (DMD) is a fatal condition occurring in approximately 1 in 3500 male births and is due to the lack of a protein called dystrophin. Initially DMD was considered a skeletal myopathy, but the pathology and consequences of cardiomyopathy are being increasingly recognised. Fibrosis, resulting from continual cycles of degeneration of the muscle tissues followed by inadequate regeneration of the muscles, is progressive in both cardiac and skeletal dystrophic muscle. In the heart fibrosis interferes with contractility and rhythm whereas it affects contractile function and causes contractures in skeletal muscles. This study utilised the mdx mouse which exhibits a pathological loss of muscle fibres and fibrosis characteristic of DMD, to examine a range of mechanisms that can influence muscle function and fibrosis. Ageing and workload both appear to contribute to the development of dystrophic features in cardiac and skeletal muscle of the mdx mouse. Therefore the effect of eccentric exercise on cardiac and skeletal muscle was examined in older mdx mice. Mice ran in 30 minute sessions for five months, 5 days per week. Downhill treadmill running did not exacerbate the contractile function or fibrosis of the mdx heart or the EDL, SOL or diaphragm muscles suggesting that cytokines influence function and fibrosis to a greater extent than workload alone. The role of the cytokine TGF-beta was examined by treating mdx mice with the TGF-beta antagonist pirfenidone at 0.4, 0.8 or 1.2 per cent in drinking water for six months. Pirfenidone improved cardiac contractility (P<0.01) and coronary flow (P<0.05), to levels comparable to control mice, despite no reduction in cardiac fibrosis. Pirfenidone did not reduce fibrosis or improve function in skeletal muscle. A deficiency of neuronal nitric oxide synthase (nNOS) in DMD and mdx mice causes a lowered production of nitric oxide indicating that the substrate of nNOS, l-arginine, may be beneficial to cardiac and skeletal muscle function in mdx mice. Oral l-arginine (5 mg/g bw) improved cardiac contractility, coronary flow and reduced cardiac fibrosis (P<0.05) without improving skeletal muscle function or fibrosis. In contrast, 10 mg/g bw l-arginine improved cardiac function and coronary flow (P<0.01), despite also elevating cardiac collagen. This increment in collagen was prevented by co-administration of prednisone. The experiments described in this dissertation reveal for the first time that pharmacological treatments in mdx mice can improve cardiac structure and function. Further elucidation of the optimum time and doses of such treatments may result in future pharmacological treatments to improve cardiac function and fibrosis in DMD.
6

C. elegans, un outil de criblage pour la recherche de traitements contre les maladies rares / Caenorhabditis elegans as chemical screening tool to find compounds and targets against neuromuscular diseases

Giacomotto, Jean 08 March 2010 (has links)
Les techniques de criblage actuelles (in vitro et in silico) sont dépendantes des efforts menés en biologie médicinale pour identifier des cibles biologiques pertinentes ; cibles difficiles à définir pour les maladies génétiques dites "perte de fonction". De plus, les composés issus de ces cribles s'avèrent souvent inefficaces et/ou toxiques une fois confrontés à la complexité physiologique d'un organisme entier. Pour contourner ce problème, nous proposons d'utiliser le nématode C. elegans, notamment pour des maladies répondant aux critères suivants : i) physiopathologie complexe et/ou mal comprise excluant le développement à court terme de médicaments sur une base rationnelle, ii) peu d’espoir de thérapie génique/cellulaire à court terme, iii) conservation chez C. elegans du gène relié à la maladie humaine et induisant un phénotype exploitable une fois inactivé. Nous démontrons ici que ce petit nématode permet de tester, à moindre coût, un grand nombre de composés chimiques tout en conservant la complexité physiologique d'un animal entier. De plus, la souplesse génétique de cet animal permet d'apporter rapidement des informations sur le mode d'action des composés identifiés. Ainsi, en plus du but initial visant à identifier des molécules bioactives à intérêt thérapeutique, cette approche peut permettre de dégager de nouvelles cibles moléculaires utiles pour l'industrie chimique, et cruciales pour la recherche de traitements contre les maladies perte de fonction. Finalement, nous présentons comment mettre en place une telle stratégie, notamment pour la myopathie de Duchenne, l'amyotrophie spinale et le syndrome de Schwartz-Jampel. Enfin, nous présentons les résultats obtenus lors des différentes campagnes de criblage, les validations des molécules les plus prometteuses et les travaux effectués pour tenter de comprendre leur mode d'action chez le nématode. / Current high-throughput screening methods for drug discovery rely on the existence of targets. Moreover, most of the hits generated during screenings turn out to be invalid after further testing in animal models. To by-pass these limitations, efforts are now being made to screen chemical libraries on whole animals. One of the most commonly used animal model in biology is the murine model Mus musculus. However, its cost limits its use in large-scale therapeutic screening. In contrast, the nematode Caenorhabditis elegans is gaining momentum as screening chemical tool. This tiny worm combines genetic amenability, low cost, and culture conditions that are compatible with large-scale screens. Its main advantage is to allow high-throughput screening in a whole-animal context. Moreover, its use is not dependent on the prior identification of a target and permits the selection of compounds with an improved safety profile. Here, we introduce this approach with the Duchenne Muscular Dystrophy, the Spinal Muscular Dystrophy and the Schwartz-Jampel syndrome. We present the methodology used with each model to screen up to 7,000 compounds and the results of these screening campaigns. We further present the validation of our best hits and try to understand their mechanism of action.
7

C. elegans, un outil de criblage pour la recherche de traitements contre les maladies rares

Giacomotto, Jean 08 March 2010 (has links) (PDF)
Les techniques de criblage actuelles (in vitro et in silico) sont dépendantes des efforts menés en biologie médicinale pour identifier des cibles biologiques pertinentes ; cibles difficiles à définir pour les maladies génétiques dites "perte de fonction". De plus, les composés issus de ces cribles s'avèrent souvent inefficaces et/ou toxiques une fois confrontés à la complexité physiologique d'un organisme entier. Pour contourner ce problème, nous proposons d'utiliser le nématode C. elegans, notamment pour des maladies répondant aux critères suivants : i) physiopathologie complexe et/ou mal comprise excluant le développement à court terme de médicaments sur une base rationnelle, ii) peu d'espoir de thérapie génique/cellulaire à court terme, iii) conservation chez C. elegans du gène relié à la maladie humaine et induisant un phénotype exploitable une fois inactivé. Nous démontrons ici que ce petit nématode permet de tester, à moindre coût, un grand nombre de composés chimiques tout en conservant la complexité physiologique d'un animal entier. De plus, la souplesse génétique de cet animal permet d'apporter rapidement des informations sur le mode d'action des composés identifiés. Ainsi, en plus du but initial visant à identifier des molécules bioactives à intérêt thérapeutique, cette approche peut permettre de dégager de nouvelles cibles moléculaires utiles pour l'industrie chimique, et cruciales pour la recherche de traitements contre les maladies perte de fonction. Finalement, nous présentons comment mettre en place une telle stratégie, notamment pour la myopathie de Duchenne, l'amyotrophie spinale et le syndrome de Schwartz-Jampel. Enfin, nous présentons les résultats obtenus lors des différentes campagnes de criblage, les validations des molécules les plus prometteuses et les travaux effectués pour tenter de comprendre leur mode d'action chez le nématode.
8

Dégénérescence musculaire chez Caenorhabditis elegans : caractérisation morphologique et étude de suppresseurs / Muscle degeneration in Caenorhabditis elegans : morphological caracterisation and study of suppressors

Brouilly, Nicolas 23 September 2013 (has links)
Les dystrpohies musculaires sont des maladies génétiques rares qui se caractérisent par une dégénérescence musculaire progressive. la Dystrophie Musculaire de Duchenne (DMD) qui est la plus sévère d'entre elles est due à des mutations dans le gène de la dystrophine. Les mécanismes cellulaires impliqués dans le processus de dégénérescence des muscles restent peu compris et aucun traitement efficace n'existe à ce jour. Notre équipe a développé un modèle de la DMD chez le nématode C. elegans qui présente une dégénérescence musculaire progressive. Pendant ma thèse, j'ai caractérisé le processus de dégénérescence musculaire chez ce modèle par microscopie électronique. J'ai également contribué à une étude du rôle des mitochondries dans la dégénérescence musculaire dystrophine-dépendante chez le nématode. Par ailleurs, j'ai étudié l'effet de suppresseurs pharmacologique et génétiques de la dégénérescence musculaire dystrophine-dépendante. Enfin, j'ai pu mettre en évidence que la force exercée par le muscle influence le taux de dégénérescence musculaire. L'ensemble des résultats obtenus au cours de ma thèse, suggèrent que la perte de fonctions de la dystrophine affecte chez le nématode l'intégrité du sarcolemme et des structures d'ancrage des sarcomères et déclenche ainsi une cascade d'événements intracellulaires conduisant in fin à la mort de la cellule musculaire. Ainsi mes travaux dethèse mettent en évidence de nouveau mécanismes cellulaires impliqués dans la dégénérescence musculaire et ouvrent de nouvelles perspectives pour le développement de thérapie visant à cibler les défauts primaires ou secondaires induits par la perte de fonction de la dystrophine / Muscle dystrophies are genetic diseases caraterized by progressive muscle degeneration. Duchenne Muscular Dystrophy (DMD) is the most severe and is due to a mutation in the gene coding the dystrophin protein. The cellular mechanisms implicated in the degenerating process arte not understood yet and there is still no efficient treatment to cure the disease. Our group decvelopped a DMD model in C. elegans that presents progressive muscle degeneration. During my PhD thesis, I characterized the process of muscle degeneration in this model by electron microscopy. I also contribued to an investigation of the role of mitochondira in dystophin-dependant muscle degeneration. I also studied the effect of pharmacological and genetic suppressors of muscle degeneration. Finally, I showed that the force developped by the worm to move influences the level of muscle degeneration. Altogether, the results I obtained during my PhD thesis, suggest that the loss of funciotnof the dystrophin protein affects the integrity of the muscle plasma membrane and the sarcomeres anchoring structures triggering a cascade of intracellular events leading to the muscle cell death in C. elegans. Therefore, my results highlight new cellular mechanisms implicated in the phenomenon of muscle degeneration and open new perspectives for the development of therapies targeting primary and secondary defects induced by the dystrophin loss of function.

Page generated in 0.0901 seconds