• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 17
  • 14
  • 7
  • 7
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Water requirements and distribution of Ammophila arenaria and Scaevola plumieri on South African coastal dunes /

Peter, Craig Ingram. January 2000 (has links)
Thesis (M. Sc. (Botany))--Rhodes University, 2000.
12

Emergent interactions influence functional traits and success of dune building ecosystem engineers

Brown, Joseph K 01 January 2016 (has links)
Stability of coastal systems are threatened by oceanic and atmospheric drivers of climate change. Sea-level rise compounded with increased frequency and intensity of storms emphasizes need for protection of inner island systems by dune formations. Dune building processes are affected by interactions between growth of ecosystem engineering dune grasses and environmental factors associated with disturbance such as sand burial and salt spray. Climate change may also cause latitudinal expansion of some species, resulting in emergence of competitive interactions that were previously absent. Topographic structure of coastlines, traditionally influenced by sand burial, could change as a result of competition emergence. My goal was to determine if species functional trait responses to common abiotic factors are altered by novel and current biotic interactions. I performed a multi-factorial greenhouse experiment by planting three common dune grasses (Ammophila breviligulata, Uniola paniculata, and Spartina patens) in different biotic combinations, using sand burial and salt spray as abiotic stressors. I hypothesized that biotic interactions will cause these dune grasses to shift functional trait responses to abiotic factors that are associated with dune building. I found that plants consistently decreased in biomass when buried. I also found that competition between A. breviligulata and U. paniculata negatively affected dune building function traits of A. breviligulata. This indicates that competition with U. paniculata could alter dune structure. In comparison A. breviligulata had a positive interaction with S. patens, which increased functional trait responses to abiotic stress. Last, we found that competitive intransitivity could occur between these species. My results can be used to make predictions on cross-scale consequences of novel competitive events. This experiment also provides evidence that consideration of local biotic interactions is important in understanding connections between plant level dynamics and large-scale landscape patterns in high stress environment.
13

Water requirements and distribution of Ammophila arenaria and Scaevola plumieri on South African coastal dunes

Peter, Craig Ingram January 2000 (has links)
Phenomenological models are presented which predicts transpiration rates (E) of individual leaves of Scaevola plumieri, an indigenous dune pioneer, and Ammophila arenaria, an exotic grass species introduced to stabilise mobile sand. In both cases E is predictably related to atmospheric vapour pressure deficit (VPD). VPD is calculated from measurements of ambient temperature and humidity, hence, where these two environmental variables are known, E can be calculated. Possible physiological reasons for the relationships of E to VPD in both species are discussed. Scaling from measurements of E at the leaf level to the canopy level is achieved by summing the leaf area of the canopy in question. E is predicted for the entire canopy leaf area by extrapolation to this larger leaf area. Predicted transpiration rates of individual shoot within the canopy were tested gravimetrically and shown to be accurate in the case of S. plumieri, but less so in the case of A. arenaria. Using this model, the amount of water used by a known area of sand dune is shown to be less than the rainfall input in the case of S. plumieri in wet and dry years. The water use of A. arenaria exceeds rainfall in the low-rainfall year of 1995, while in 1998 rainfall input is slightly higher than water extraction by the plants. Using a geographic information system (GIS), regional maps (surfaces) of transpiration were calculated from surfaces of mean monthly temperature and mean monthly relative humidity. Monthly surfaces of transpiration were subtracted from the monthly median rainfall to produce a surface of mean monthly water deficit. Areas of water surpluses along the coast correspond with the recorded distribution of both species in the seasons that the plants are most actively growing and reproducing. This suggests that unfavourable water availability during these two species growth periods limit their distributions along the coast. In addition to unfavourable water deficits, additional climatic variables that may be important in limiting the distribution of these two species were investigated using a discriminant function analysis.
14

Coastal dune ecology and management in the Eastern Cape

Avis, Anthony Mark January 1993 (has links)
The importance of understanding the ecological functioning of coastal dune systems is emphasized as being fundamental to the correct management of the dune landscape. Dune vegetation along the Eastern Cape coastline, from Cape St Francis in the west to Kei Mouth in the east was described in terms of the distribution and phytochorological affinities of the taxa. At a regional scale species distribution was strongly influenced by both the climate, particularly rainfall, and the phytochorological affinities of the taxa. Seven communities were defined using TWINSPAN, and the interrelationships between these communities in anyone area appeared to be linked to a successional gradient. Dune Slacks are thought to play a key role in this successional sequence, and a temporal study of this community led to a conceptual model of plant succession in these dunefields. Climate, particularly rainfall and wind, are major factors influencing plant succession. Wind-borne sand causes the slacks to migrate in an easterly direction under the influence of the predominantly westerly winds, although easterly winds, mainly in summer months may reverse these trends. Autogenic changes appeared to be important in this succession, and a comparative study of a good example of a primary succession at Mtunzini in Natal was undertaken to elucidate the main mechanism of change. Eight communities that were identified here were concluded to be distnbuted along a gradient of increasing age, with successional changes predictable, linear and directional. Species were grouped in distinct zones along the continuum and edaphic changes (decrease in soil pH, increase in organic matter and exchangeable bases) were related to the community based changes in species composition. The mechanism of change supported the facilitation model of plant succession which is a modification of the original Clementsian concept. Similar results were found in the Eastern Cape, but due to the harsh environment, multiple pathways of succession exist. Data from this study lent support to the model of plant succession developed earlier, and confinned that the dune slacks played an important role in this facilitation by acting as centres of diversity. The foredunes were found to have an indirect role in protecting these slacks from salt spray and sand movement. The central theme of the management studies was to investigate the ecological consequences of recreational pressure within the dune environment. Current levels of beach utilization at East London were lower than other beaches in South Africa, but a general trend of increasing utilization due to sociopolitical changes can be expected. The suitability of questionnaire surveys to assess aspects such as the adequacy of facilities, perceptual carrying capacity and the beach users opinion of natural vegetation and preference for particular beaches was demonstrated. The dune vegetation was found to be sensitive to human trampling, but at current levels, the ecological carrying capacity will not be exceeded since results of the aerial census counts and questionnaire survey revealed that few people entered sensitive zones such as the coastal forest. More detailed long term studies on the susceptibility of dune vegetation to both trampling and off-road vehicle impacts revealed a low resilience of dune plant communities to these effects. Although susceptibility differed between the three communities tested, generally the greatest amount of damage occurred after the first few passages, and vehicles caused a more significant decrease in height when compared to trampling. Recovery rates were slow and low levels of repeated damage were sufficient to retard or prevent the recovery of the plants. Stricter control of vehicle use on beaches is therefore required, and in high use zones the ecological carrying capacity should be increased by providing access tracks if possible, or if not possible, by restricting access. A historical account of the process of dune stabilization showed that although first initiated in 1845, indigenous species were only used in the past three decades. The use of alien species has resulted in problems such as a reduction in the ecological integrity and aesthetic appeal of coastal systems. The techniques applied in the stabilization of drift sands with indigenous vegetation have been successful, as revealed by a quantitative survey of 17 sites in the Eastern Cape. Sites were grouped by multivariate analysis on the basis of their species composition, and variability between sites was dependent on the types of species planted. Selection of suitable species is therefore important and is discussed with respect to their natural distribution along the coast. The long term objective of stabilization should be the creation of functional, diverse, aesthetic ecosystems, since the intrinsic and economic value of the dune landscape for tourism lies therein. However, detailed studies should be undertaken prior to implementing a manipulative process such as dune stabilization, since ecological processes may be disrupted. An understanding of such processes is therefore important if one wishes to effectively manage the dune landscape.
15

Ammophila arenaria (L.) Link (marram grass) in South Africa and its potential invasiveness

Hertling, Ursula Margret January 1998 (has links)
Ammophila arenaria (L.) Link is a European sand binding plant which was introduced to South Africa in the 1870's for the purpose of dune stabilisation. Because of its known invasiveness along the west coast of North America, and the problems South African ecosystems experience with alien invader plants, it was deemed necessary to study the biology and ecology of this species in South Africa. The aim of this thesis is to establish the potential invasiveness of A. arenaria on Cape coastal dunes and assess whether its use for dune stabilisation is still justifiable. A. arenaria occurs nowadays between the Langebaan area on the west coast and Gonubie in the Eastern Cape. Although widespread, the grass appears to occur only in areas where it has been planted. Its unaided spread may be prevented by adverse climatic conditions. Studies on the community biology of South African A. arenaria communities as compared to indigenous dune plant communities and natural A. arenaria communities in Europe cannot confirm the aggressive behaviour that A. arenaria shows in California and Oregon. In South Africa, A. arenaria does not exert strong floristic control over other species or outcompete and replace them, neither does it alter the topography of South African beaches and dunes. It forms weaker species associations and tends to develop communities of little species variability along the coast, thereby proving its alienness in South Africa, but this does not imply its invasiveness. Studies on succession of A. arenaria stabilisation areas show that monospecific A. arenaria plantings can be succeeded by a species-rich indigenous dune scrub or dune fynbos within a few decades. Plant-parasitic nematodes have been recorded, which may play an important role in the succession of A. arenaria stands in South Africa as was observed in Europe. Monitoring of A. arenaria communities and indigenous communities over nearly three years shows that A. arenaria is not spreading and replacing indigenous plants but in fact rather being replaced by the latter. A. arenaria profits from a superior sand burial tolerance but is affected by adverse climatic factors, mostly the lack of rainfall and strong radiation. In comparison to the indigenous dune grasses Thinopyrum distichum and Ehrharta villosa, it does not show any superior demographic traits such as an unusually high growth rate or large aboveground biomass production. Although A. arenaria produces viable seed in South Africa, the indigenous grasses show better germination and seedling establishment in the field. This study indicates that A. arenaria is not invasive in South Africa, nor likely to become an invader species in the near future. However, more research is required to confirm these results and more caution recommended regarding the further use of this alien grass for dune stabilisation.
16

The zonation of coastal dune plants in relation to sand burial, resource availability and physiological adaptation

Gilbert, Matthew Edmund January 2008 (has links)
When considering the large amount of work done on dune ecology, and that a number of the classical ecological theories originate from work on dunes, it is apparent that there remains a need for physiological and mechanistic explanations of dune plant phenomena. This thesis demonstrated that in the extreme coastal environment dune plants must survive both high rates of burial (disturbance), and low nutrient availability (stress). The ability of four species to respond to these two factors corresponded with their position in a vegetation gradient on the dunes. A low stem tissue density was shown to enhance the potential stem elongation rate of buried plants, but reduced the maximum height to which a plant could grow. Such a tradeoff implies that tall light-competitive plants are able to survive only in stable areas, while burial responsive mobile-dune plants are limited to areas of low vegetation height. This stem tissue density tradeoff was suggested as the mechanism determining the zonation that species show within the dune vegetation gradient present at various sites in South Africa. Finally, detailed investigations of dune plant ecophysiology found that: 1) The resources used in the response to burial derive from external sources of carbon and nitrogen, as well as simple physiological and physical mechanisms of resource allocation. 2) The leaves of dune plants were found to be operating at one extreme of the photosynthetic continuum; viz efficient use of leaf nitrogen at the expense of water loss. 3) Contrary to other ecosystems, the environmental characteristics of dunes may allow plants to occupy a high disturbance, high stress niche, through the maintenance of lowered competition. 4) At least two mobile-dune species form steep dunes, and are able to optimise growth, on steeper dunes, such that they have to grow less in response to burial than plants that form more shallow dunes. In this thesis, it was shown that the link between the carbon and nitrogen economies of dune plants was pivotal in determining species distributions and survival under extreme environmental conditions. As vast areas of the world’s surface are covered by sand dunes these observations are not just of passing interest.
17

Vegetation succession and soil properties following the removal of pine plantations on the eastern shores of Lake St Lucia, South Africa.

James, Barry Mark. January 1998 (has links)
Pine plantations have been established on secondary grassland on the dune systems of the Eastern Shores of Lake St Lucia, KwaZulu-Natal, South Africa for the past 40 years. These plantations have been progressively felled for the past six years, and will continue to be felled until the year 2011, by which time they will be eliminated. Space-for-time substitution was used to determine the direction of both woody and herbaceous vegetation succession and to predict possible future management implications for the Eastern Shores. Soil samples were taken from undisturbed grassland, grassland with trees, dune forest, pine plantations, and clearfelled areas at various successional stages. To determine the effects of the pine plantations on the soils of the area, soils were subjected to particle size analysis, and determination of pH, organic carbon, phosphorus, exchangeable bases, iron and aluminium. Minimal modification of the sandy soils by the pine plantations was found to have occurred. That which did occur was shown to be short-term, and to be ameliorated by the establishment of an indigenous woody understorey, resembling pioneer dune forest. Soil under plantations was shown to have a lower pH and cation exchange capacity than under opposite indigenous vegetation but no other direct effects were observed. The direction of succession was determined by the nature of the indigenous vegetation adjacent to the plantation. Pine plantations were shown to facilitate succession towards dune forest by the exclusion of fire, provision of perches and refugia for forest-dwelling animals, and creation of a forest environment for the establishment of trees. However, the extent of re-establishment of indigenous dune forest under pine plantations was shown to be directly related to the nature of the adjacent indigenous vegetation, be it grassland, grassland with trees or dune forest. / Thesis (M.Sc.)-University of Natal, Pietermaritzburg, 1998.
18

The effects of dune stabilization on the spatiotemporal distribution of soil moisture resources, Northern Great Plains, Canada

Koenig, Daniel Edgar January 2012 (has links)
In dryland environments, the availability of soil moisture is the primary control on plant species’ distributions. In the sandhill regions of the northern Great Plains, vegetation establishment has transformed highly mobile, desert-like dune fields into stabilized landscapes covered by mixed-grassland prairie. This study examines how dune stabilization has modified the spatiotemporal distribution of soil moisture resources. An ergodic (space-for-time) approach was used, comparing soil moisture dynamics on active and vegetation-stabilized dunes in the Bigstick Sand Hills of southwestern Saskatchewan. Results indicate that while dune stabilization has enhanced near-surface soil moisture availability, deeper profile soil moisture recharge is reduced. Through better understanding how vegetation has modified soil moisture dynamics in stabilizing sandhill regions, better management practices may be implemented to maintain water resource availability and ecosystem health. / xii, 97 leaves : ill., maps ; 29 cm
19

The influence of biophysical feedbacks and species interactions on grass invasions and coastal dune morphology in the Pacific Northwest, USA

Zarnetske, Phoebe Lehmann, 1979- 09 September 2011 (has links)
Biological invasions provide a unique opportunity to study the mechanisms that regulate community composition and ecosystem function. Invasive species that are also ecosystem engineers can substantially alter physical features in an environment, and this can lead to cascading effects on the biological community. Aquatic-terrestrial interface ecosystems are excellent systems to study the interactions among invasive ecosystem engineers, physical features, and biological communities, because interactions among vegetation, sediment, and fluids within biophysical feedbacks create and modify distinct physical features. Further, these systems provide important ecosystem services including coastal protection afforded by their natural features. In this dissertation, I investigate the interactions and feedbacks among sand-binding beach grass species (a native, Elymus mollis (Trin.), and two non-natives, Ammophila arenaria (L.) Link and A. breviligulata Fernald), sediment supply, and dune shape along the U.S. Pacific Northwest coast. Dunes dominated by A. arenaria tend to be taller and narrower compared to the shorter, wider dunes dominated by A. breviligulata. These patterns suggest an ecological control on dune shape, and thus, coastal vulnerability to overtopping waves. I investigate the causes and consequences of these patterns with experiments, field observations, and modeling. Specifically, I investigate the relative roles of vegetation and sediment supply in shaping coastal dunes over inter-annual and multi-decadal time scales (Chapter 2), characterize a biophysical feedback between beach grass species growth habit and sediment supply (Chapter 3), uncover the mechanisms leading to beach grass coexistence and whether A. breviligulata can invade and dominate new sections of coastline (Chapter 4), and examine the non-target effects resulting from management actions that remove Ammophila for the recovery of the threatened Western Snowy plover (Charadrius alexandrinus nivosus) (Chapter 5). I found that vegetation and sediment supply play important roles in dune shape changes across inter-annual and multi-decadal time scales (Chapter 2). I determined that a biophysical feedback between the beach grass growth habits and sediment supply results in species-specific differences in sand capture ability, and thus, is a likely explanation for differences in dune shape (Chapter 3). I found that all three beach grass species can coexist across different sediment deposition rates, and that this coexistence is largely mediated by positive direct and indirect species interactions. I further determined that A. breviligulata is capable of invading and dominating the beach grass community in regions where it is currently absent (Chapter 4). Combined, these findings indicate that A. breviligulata is an inferior dune building species as compared to A. arenaria, and suggest that in combination with sediment supply gradients, these species differences ultimately lead to differences in dune shape. Potential further invasions of A. breviligulata into southern regions of the Pacific Northwest may diminish the coastal protection ability of dunes currently dominated by A. arenaria, but this effect could be moderated by the predicted near co-dominance of A. arenaria in these lower sediment supply conditions. Finally, I found that the techniques used to remove Ammophila for plover recovery have unintended consequences for the native and endemic dune plant communities, and disrupt the natural disturbance regime of shifting sand. A whole-ecosystem restoration focus would be an improvement over the target-species approach, as it would promote the return of the natural disturbance regime, which in turn, would help recover the native biological community. The findings from this dissertation research provide a robust knowledge base that can guide further investigations of biological and physical changes to the coastal dunes, can help improve the management of dune ecosystem services and the restoration of native communities, and can help anticipate the impacts of future beach grass invasions and climate change induced changes to the coast. / Graduation date: 2012 / Access restricted to the OSU Community at author's request from Sept. 22, 2011 - March 22, 2012

Page generated in 0.104 seconds