• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 17
  • 17
  • 17
  • 8
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Design, analysis and simultion for optical access and wide-area networks.

Chen, Jiajia January 2009 (has links)
Due to the tremendous growth of traffic volume caused by both exponential increase of number of Internet users and continual emergence of new bandwidth demanding applications, high capacity networks are required in order to satisfactorily handle the extremely large amount of traffic. Hence, optical fiber communication is the key technology for the network infrastructure. This thesis addresses design, analysis and simulation of access and core networks targeting important research problems, which need to be tackled for the effective realization of next generation optical networks. Among different fiber access architectures, passive optical network (PON) is considered as the most promising alternative for the last mile connection due to its relatively low cost and resource efficiency. The inherent bursty nature of the user generated traffic results in dynamically changing bandwidth demand on per subscriber basis. In addition, access networks are required to support differentiated quality of service and accommodate multiple service providers. To address these problems we proposed three novel scheduling algorithms to efficiently realize dynamic bandwidth allocation in PON, along with guaranteeing both the priority and fairness of the differentiated services among multiple users and/or service providers. Meanwhile, because of the increasing significance of reliable access to network services, an efficient fault management mechanism needs to be provided in PON. In addition, access networks are very cost sensitive and the cost of protection should be kept as low as possible. Therefore, we proposed three novel cost-effective protection architectures keeping in mind that reliability requirement in access networks should be satisfied at the minimal cost. Regarding the optical core networks, replacing electronic routers with all-optical switching nodes can offer significant advantages in realizing high capacity networks. Because of the technological limitations for realizing all-optical nodes, the focus is put on the ingenious architecture design. Therefore, we contributed on novel switching node architectures for optical circuit and packet switching networks. Furthermore, we addressed different aspects of routing and wavelength assignment (RWA) problem, which is an important and hard task to be solved in wavelength routed networks. First, we proposed an approach based on the information summary protocol to reduce the large amount of control overhead needed for dissemination of the link state information in the case of adaptive routing. In addition, transparency in optical networks may cause vulnerability to physical layer attacks. To target this critical security related issue, we proposed an RWA solution to minimize the possible reachability of a jamming attack. Finally, in order to evaluate our ideas we developed two tailor-made simulators based on discrete event driven system for the detailed studies of PON and switched optical networks. Moreover, the proposed tabu search heuristic for our RWA solution was implemented in C++. / QC 20100707
12

Efficient Routing and Resource Sharing Mechanisms for Hybrid Optical-Wireless Access Networks

January 2016 (has links)
abstract: The integration of passive optical networks (PONs) and wireless mesh networks (WMNs) into Fiber-Wireless (FiWi) networks has recently emerged as a promising strategy for providing flexible network services at relative high transmission rates. This work investigates the effectiveness of localized routing that prioritizes transmissions over the local gateway to the optical network and avoids wireless packet transmissions in radio zones that do not contain the packet source or destination. Existing routing schemes for FiWi networks consider mainly hop-count and delay metrics over a flat WMN node topology and do not specifically prioritize the local network structure. The combination of clustered and localized routing (CluLoR) performs better in terms of throughput-delay compared to routing schemes that are based on minimum hop-count which do not consider traffic localization. Subsequently, this work also investigates the packet delays when relatively low-rate traffic that has traversed a wireless network is mixed with conventional high-rate PON-only traffic. A range of different FiWi network architectures with different dynamic bandwidth allocation (DBA) mechanisms is considered. The grouping of the optical network units (ONUs) in the double-phase polling (DPP) DBA mechanism in long-range (order of 100~Km) FiWi networks is closely examined, and a novel grouping by cycle length (GCL) strategy that achieves favorable packet delay performance is introduced. At the end, this work proposes a novel backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations (e.g., LTE eNBs) and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateway (S/P-GW). The Sm-GW accommodates flexible number of small cells while reducing the infrastructure requirements at the S-GW of LTE backhaul. In contrast to existing methods, the proposed Sm-GW incorporates the scheduling mechanisms to achieve the network fairness while sharing the resources among all the connected small cells base stations. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2016
13

Alocação dinâmica de largura de banda em redes EPON / Dynamic bandwidth allocation for EPON networks

Carmen Orencia Carrasco Arbieto 10 August 2007 (has links)
As redes de telecomunicações se dividem em redes de longa distância, redes metropolitanas e redes de acesso. As redes de longa distância e metropolitana usufruem a alta capacidade de largura de banda da fibra óptica, enquanto nas redes de acesso há um gargalo de largura de banda por causa do uso de pares de fios e cabo coaxial. Para solucionar este problema e oferecer aos usuários acesso banda larga de baixo custo foram propostas as redes ópticas passivas (passive optical network - PON). A PON é formada por dois elementos básicos, a unidade de rede óptica (optical network unit - ONU), localizada perto dos assinantes, e o terminal de linha óptica (optical line terminal - OLT), localizado próximo ao provedor de serviços. Dentre os padrões disponíveis para redes PON, o Ethernet (EPON), padronizado pelo grupo IEEE 802.3ah, é opção atraente porque ele é bastante difundido nas redes locais. O protocolo de controle multiponto (multipoint control protocol - MPCP), já especificado, é responsável pelo controle de acesso ao meio, fornecendo infra-estrutura de sinalização para transmissão entre OLT e ONUs. Entretanto, o algoritmo de alocação de largura de banda, que realiza o controle de acesso ao meio com base no MPCP, foi considerado fora do escopo de trabalho do grupo de trabalho, permitindo que seja desenvolvido pelos fornecedores de equipamentos. Neste trabalho, arquiteturas de rede EPON e o protocolo MPCP são descritos e algoritmos de alocação de largura de banda são avaliados mediante simulação computacional. São abordados os algoritmos de alocação de largura de banda que integram multiplexação estatística e técnicas para o suporte a classes de serviços diferenciados, com base no esquema de multiplexação por divisão no tempo (time division multiplexing - TDM). Algoritmos que integram a multiplexação por divisão em comprimento de onda (wavelength division multiplexing - WDM) à arquitetura EPON TDM são também investigados. Os algoritmos WDM-TDM permitem a atualização progressiva da EPON que emprega o esquema TDM para WDM. / Telecommunication networks are divided into core, metropolitan and access networks. The core and metropolitan networks use high capacity bandwidth optical fibers, while the access networks have bandwidth bottlenecks because of the use of twisted-pair wires and coaxial cable. To solve this problem and to offers the users broadband access at low cost the use of passive optical networks (PON) is proposed. A PON is formed by two basic elements, the optical network unit (ONU), positioned close to the customers and the optical line terminal (OLT), located close to the service provider. Within the available standards for PON networks, the Ethernet (EPON), standardised by the IEEE group 802.3ah, is an attractive option because it is already widely used in local networks. The multipoint control protocol (MPCP), already specified, is responsible for the media access control, providing signaling infrastructure for transmission between OLT and ONUs. However, the bandwidth allocation algorithm, that controls access based on MPCP, was considered outside the scope of the work group, permitting that this be developed by equipment providers. In this work, EPON architectures and the MPCP protocol are described and bandwidth allocation algorithms are evaluated with computational simulation. Bandwidth allocation algorithms which integrate statistical multiplexing and techniques to support for differentiated classes of service, based on time division multiplexing (TDM) scheme are investigated. Algorithms that integrate wavelength division multiplexing (WDM) to the EPON TDM architecture are also investigated. The WDM-TDM algorithms permit the progressive upgrade of EPON based TDM to WDM schemes.
14

Dynamic Bandwidth allocation algorithms for an RF on-chip interconnect / Allocation dynamique de bande passante pour l’interconnexion RF d’un réseau sur puce

Unlu, Eren 21 June 2016 (has links)
Avec l’augmentation du nombre de cœurs, les problèmes de congestion sont commencé avec les interconnexions conventionnelles. Afin de remédier à ces défis, WiNoCoD projet (Wired RF Network-on-Chip Reconfigurable-on-Demand) a été initié par le financement de l’Agence Nationale de Recherche (ANR). Ce travail de thèse contribue à WiNoCoD projet. Une structure de contrôleur de RF est proposé pour l’interconnexion OFDMA de WiNoCoD et plusieurs algorithmes d’allocation de bande passante efficaces (distribués et centralisés) sont développés, concernant les demandes et contraintes très spécifiques de l’environnement sur-puce. Un protocole innovante pour l’arbitrage des sous-porteuses pour des longueurs bimodales de paquets sur-puce, qui ne nécessite aucun signalisation supplémentaire est introduit. Utilisation des ordres de modulation élevés avec plus grande consommation d’énergie est évaluée. / With rapidly increasing number of cores on a single chip, scalability problems have arised due to congestion and latency with conventional interconnects. In order to address these issues, WiNoCoD project (Wired RF Network-on-Chip Reconfigurable-on-Demand) has been initiated by the support of French National Research Agency (ANR). This thesis work contributes to WiNoCoD project. A special RF controller structure has been proposed for the OFDMA based wired RF interconnect of WiNoCoD. Based on this architecture, effective bandwidth allocation algorithms have been presented, concerning very specific requirements and constraints of on-chip environment. An innovative subcarrier allocation protocol for bimodal packet lengths of cache coherency traffic has been presented, which is proven to decrease average latency significantly. In addition to these, effective modulation order selection policies for this interconnect have been introduced, which seeks the optimal delay-power trade-off.
15

Nelineární analýza a predikce síťového provozu / Nonlinear analysis and prediction of network traffic

Člupek, Vlastimil January 2012 (has links)
This thesis deal with an analysis of network traffic and its properties. In this thesis are discussed possibilities of prediction network traffic by FARIMA model, theory of chaos with Lyapunov exponent and by neural networks. The biggest attention was dedicated to prediction network traffic by neural networks. In Matlab with using Neural Network Toolbox were created, trained and tested recurrent networks for prediction specific types of network traffics, which was captured on local network. There were choosed Elman network, LRN and NARX network to test the prediction of network traffic, results were discussed. Thesis also introduce area of application ability prediction of network traffic, there is introduce design of system for dynamic allocation bandwidth with particular description of its prediction part. Thesis also states possible use designed system for dynamic allocation of bandwidth.
16

Predikce datového toku v počítačových sítích / Prediction of data flow in computer networks

Zvěřina, Lukáš January 2013 (has links)
The aim of this thesis was to study problems of prediction of data in computer networks. Furthermore, this work deals with network traffic and analyzing its properties. In this study were analyzed the possibilities of network traffic prediction using Farima model, the theory of chaos with Lyapunov exponents and neural networks. Possibilities of prediction with the focus on neural network were discussed in detail here, mainly on recurrent neural networks. Prediction was performed in Matlab development environment in Neural Network Toolbox, where they were created, trained and evaluated neural network to predict specific types of network traffic. For testing were selected Elman network NARX network and general LRN recurrent network. The results were clearly organized into tables and plotted in graphical relationships before and after the use of predictive techniques designed to final evaluation.
17

Dynamic bandwidth allocation MAC protocols for gigabit-capable passive optical networks

Chang, Ching-Hung January 2008 (has links)
The research initiatives addressed in this thesis are geared towards improving the performance of passive optical networks (PONs) through the development of advanced dynamic bandwidth allocation (DBA) protocols. In particular, the aim of the research undertaken is to enhance the quality of service (QoS) offered by standard PONs by means of providing subscribers with service level agreement (SLA) to fulfil applications and associated bandwidth requirements on demand. To accomplish the research objectives, a novel service and bandwidth focused DBA protocol is developed for standard time division multiplexing (TDM), gigabit-capable PONs (GPONs) by flexibly assigning a guaranteed minimum bandwidth to each optical network unit (ONU),terminated at subscribers premises. Modelling and simulation of the developed algorithms have displayed a tenfold enhancement in network performance, showing a superior performance to other published DBA protocols, in terms of mean packet delay. To accomplish protocol optimisation, the ONU upstream transmission properties of TDM-PONs have been further analysed and subsequently the ONU data transfer order in each communication cycle has been dynamically configured to increase the network upstream throughput by overlapping the upstream transmission period with parts of the bandwidth request-allocation process between OLT and ONUs. In addition, with the objective of extending the application of the developed protocol to long-reach PONs by means of reducing the augmented propagation delays due to the network’s extensive reach, the concept of virtual communication cycles has been incorporated into the optimised DBA algorithm. This approach demonstrates comparable transmission efficiency in the context of subscriber throughput and packet delay as in a standard PON but at much longer distances from the network exchange. To overcome the inevitably limited communication capacity of single wavelength TDM protocols and with the transportation of the ever increasing, time-sensitive, multi-media services in mind, a novel multi-wavelength DBA protocol is then developed to be applied to a wavelength division multiplexing–PON. With this protocol, both the downstream and upstream network capacity is dynamically adjusted according to subscribers’ service level and bandwidth demand in each polling cycle as opposed to a fixed upstream network capacity in TDM-PONs. It therefore also demonstrates improved upstream transmission efficiency.

Page generated in 0.1345 seconds