• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assessment of Dynamic Response and Seismic Zonation of Osaka Depositional Basin Based on the Geoinformatic Database / 地盤情報データベースに基づく大阪堆積平野の動的応答特性とサイスミックゾーニングに関する研究

ZIN, NAUNG HTUN 23 September 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22759号 / 工博第4758号 / 新制||工||1744(附属図書館) / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 三村 衛, 教授 渦岡 良介, 准教授 肥後 陽介 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
2

Seismic performance of a  bridge subjected to far-field  ground motions by a Mw 9.0  earthquake and near-field  ground motions by a Mw 6.9  earthquake

Goto, Reina January 2012 (has links)
In the last two decades, two major earthquakes have occurred in Japan: the 1995 Kobe earthquake and the 2011 Great East Japan earthquake. In the 2011 Great East Japan earthquake, many bridge structures were destroyed by the tsunamis, but it is interesting to study the ground motion induced damage and also how this earthquake differed from the one in 1995. In this thesis, the seismic response of a bridge designed according to the current Japanese Design Specifications was evaluated when it is subjected to near-field ground motions recorded during the 1995 Kobe earthquake and far-field ground motions recorded during the 2011 Great East Japan earthquake. For this purpose, a series of nonlinear dynamic response analysis was conducted and the seismic performance of the bridge was verified in terms of its displacement and ductility demand. It was found from the dynamic response analysis that the seismic response of the target bridge when subjected to the ground motions from the 2011 Great East Japan earthquake was smaller than during the 1995 Kobe earthquake. Although the ground motions from the 2011 Great East Japan earthquake were very strong, they were not as strong as the ground motions from the 1995 Kobe earthquake. The results obtained in this thesis clarify the validity of the Type I and Type II design ground motions. The target bridge used in this thesis was designed according to the post-1990 design specifications and showed limited nonlinear response when subjected to the different ground motions which shows how efficient the enhancement of the seismic performance of bridges has been since the 1990’s.

Page generated in 0.0981 seconds