391 |
Dynamical systems theory for transparent symbolic computation in neuronal networksCarmantini, Giovanni Sirio January 2017 (has links)
In this thesis, we explore the interface between symbolic and dynamical system computation, with particular regard to dynamical system models of neuronal networks. In doing so, we adhere to a definition of computation as the physical realization of a formal system, where we say that a dynamical system performs a computation if a correspondence can be found between its dynamics on a vectorial space and the formal system’s dynamics on a symbolic space. Guided by this definition, we characterize computation in a range of neuronal network models. We first present a constructive mapping between a range of formal systems and Recurrent Neural Networks (RNNs), through the introduction of a Versatile Shift and a modular network architecture supporting its real-time simulation. We then move on to more detailed models of neural dynamics, characterizing the computation performed by networks of delay-pulse-coupled oscillators supporting the emergence of heteroclinic dynamics. We show that a correspondence can be found between these networks and Finite-State Transducers, and use the derived abstraction to investigate how noise affects computation in this class of systems, unveiling a surprising facilitatory effect on information transmission. Finally, we present a new dynamical framework for computation in neuronal networks based on the slow-fast dynamics paradigm, and discuss the consequences of our results for future work, specifically for what concerns the fields of interactive computation and Artificial Intelligence.
|
392 |
Leader-Follower Dynamics Anisotropic Coupling and Influence in Social CoordinationJanuary 2015 (has links)
abstract: The current work investigated the emergence of leader-follower roles during social motor coordination. Previous research has presumed a leader during coordination assumes a spatiotemporally advanced position (e.g., relative phase lead). While intuitive, this definition discounts what role-taking implies. Leading and following is defined as one person (or limb) having a larger influence on the motor state changes of another; the coupling is asymmetric. Three experiments demonstrated asymmetric coupling effects emerge when task or biomechanical asymmetries are imputed between actors. Participants coordinated in-phase (Ф =0o) swinging of handheld pendulums, which differed in their uncoupled eigenfrequencies (frequency detuning). Coupling effects were recovered through phase-amplitude modeling. Experiment 1 examined leader-follower coupling during a bidirectional task. Experiment 2 employed an additional coupling asymmetry by assigning an explicit leader and follower. Both experiment 1 and 2 demonstrated asymmetric coupling effects with increased detuning. In experiment 2, though, the explicit follower exhibited a phase lead in nearly all conditions. These results confirm that coupling direction was not determined strictly by relative phasing. A third experiment examined the question raised by the previous two, which is how could someone follow from ahead (i.e., phase lead in experiment 2). This was tested using a combination of frequency detuning and amplitude asymmetry requirements (e.g., 1:1 or 1:2 & 2:1). Results demonstrated larger amplitude movements drove the coupling towards the person with the smaller amplitude; small amplitude movements exhibited a phase lead, despite being a follower in coupling terms. These results suggest leader-follower coupling is a general property of social motor coordination. Predicting when such coupling effects occur is emphasized by the stability reducing effects of coordinating asymmetric components. Generally, the implication is role-taking is an emergent strategy of dividing up coordination stabilizing efforts unequally between actors (or limbs). / Dissertation/Thesis / Doctoral Dissertation Psychology 2015
|
393 |
Critical Coupling and Synchronized Clusters in Arbitrary Networks of Kuramoto OscillatorsJanuary 2018 (has links)
abstract: The Kuramoto model is an archetypal model for studying synchronization in groups
of nonidentical oscillators where oscillators are imbued with their own frequency and
coupled with other oscillators though a network of interactions. As the coupling
strength increases, there is a bifurcation to complete synchronization where all oscillators
move with the same frequency and show a collective rhythm. Kuramoto-like
dynamics are considered a relevant model for instabilities of the AC-power grid which
operates in synchrony under standard conditions but exhibits, in a state of failure,
segmentation of the grid into desynchronized clusters.
In this dissertation the minimum coupling strength required to ensure total frequency
synchronization in a Kuramoto system, called the critical coupling, is investigated.
For coupling strength below the critical coupling, clusters of oscillators form
where oscillators within a cluster are on average oscillating with the same long-term
frequency. A unified order parameter based approach is developed to create approximations
of the critical coupling. Some of the new approximations provide strict lower
bounds for the critical coupling. In addition, these approximations allow for predictions
of the partially synchronized clusters that emerge in the bifurcation from the
synchronized state.
Merging the order parameter approach with graph theoretical concepts leads to a
characterization of this bifurcation as a weighted graph partitioning problem on an
arbitrary networks which then leads to an optimization problem that can efficiently
estimate the partially synchronized clusters. Numerical experiments on random Kuramoto
systems show the high accuracy of these methods. An interpretation of the
methods in the context of power systems is provided. / Dissertation/Thesis / Doctoral Dissertation Applied Mathematics 2018
|
394 |
Bifurcação de Hopf em um modelo para a dinâmica do vírus varicela-zoster / Hopf bifurcation in a model for the dynamics of varicella-zoster virusVieira, Ailton Luiz 21 February 2011 (has links)
Made available in DSpace on 2015-03-26T13:45:33Z (GMT). No. of bitstreams: 1
texto completo.pdf: 526815 bytes, checksum: 1cb769c119746d92b303e0dbe7594ab2 (MD5)
Previous issue date: 2011-02-21 / This paper proposes a system of differential equations composed of five ordinary
nonlinear equations engaged in a structure based on the SIR model of Kermack and
McKendrick 1927, which aims to describe the dynamics of varicella-zoster virus in human populations. Analysis of its equilibrium points we find the emergence of a Hopf
bifurcation. Mirrored in article Bifurcation analysis of model for the biological control
of Sotomayor et al., through the Hopf analysis of the conditions of non-degeneracy and
transversality, we guarantee the appearance of a periodic orbit. / Este trabalho propõe um sistema de equações diferenciais ordinárias composto por
cinco equações não lineares acopladas, numa estrutura baseada no modelo SIR de Kermack e Mckendrick 1927, que visa descrever a dinâmica do vírus varicela-zoster na população de humanos. Da análise de seus pontos de equilíbrio verificamos o surgimento de uma bifurcação de Hopf. Espelhados no artigo Bifurcation analysis of a model for biological control de Sotomayor et al., por meio da análise das condições de Hopf, de não degenerescência e de transversalidade, garantimos o aparecimento de uma órbita periódica.
|
395 |
Sistemas dinâmicos e o método do filtro de Kalman / Dynamic systems and the Kalman filter methodMovilla, Jose Gregorio Solorzano [UNESP] 19 December 2016 (has links)
Submitted by JOSE GREGORIO SOLORZANO MOVILLA null (jsolorza79@gmail.com) on 2017-01-09T13:40:35Z
No. of bitstreams: 1
Sistemas Dinâmicos e o método do filtro de Kalman.pdf: 1549234 bytes, checksum: ec2d80170e323569d4260fc92ec59802 (MD5) / Approved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-01-11T19:01:40Z (GMT) No. of bitstreams: 1
movilla_jgs_me_rcla.pdf: 1549234 bytes, checksum: ec2d80170e323569d4260fc92ec59802 (MD5) / Made available in DSpace on 2017-01-11T19:01:40Z (GMT). No. of bitstreams: 1
movilla_jgs_me_rcla.pdf: 1549234 bytes, checksum: ec2d80170e323569d4260fc92ec59802 (MD5)
Previous issue date: 2016-12-19 / Estimar os estados de um sistema é um problema que a cada dia assume maior importância devido ao grande interesse por conhecer com exatidão os resultados dados pelos sistemas dinâmicos em qualquer tempo. Principalmente nos casos onde o sistema é estocástico, o problema da estimação apresenta uma maior complexidade. É nesse contexto que os estudos que Kalman realizou no século XX, sobre a estimação de sistemas dinâmicos estocásticos, ganharam maior relevância. O filtro de Kalman foi o principal resultado desses estudos, pela e eficácia demonstrada dentro desse campo de estudo. Este trabalho tem como eixo principal o filtro de Kalman e sua aplicação tendo importância como o melhor estimador para os estados de sistemas dinâmicos lineares estocásticos em tempo discreto. / Estimating the states of a system is a problem of great importance due to interest in knowing exactly the results given by dynamic systems at any time. Moreover, if the system is stochastic, what causes the estimation problem to have complexity. In this context, Kalman studies in the previous century on the estimation of stochastic dynamical systems, whose result is the lter, which, due to its e ciency, is the most used in this eld. In this work the main focus is the Kalman lter and its application having in view its importance as the best estimator for the states of linear dynamic stochastic systems of discrete time.
|
396 |
Investigação de escala para a bifurcação tangente no mapa logístico / Scaling investigation for the tangent bifurcation into logistic mapHermes, Joelson Dayvison Veloso 20 February 2018 (has links)
Submitted by Joelson Dayvison Veloso Hermes (joelson.hermes@ifsuldeminas.edu.br) on 2018-04-23T01:02:53Z
No. of bitstreams: 1
Joelson_VFinal.pdf: 1544708 bytes, checksum: 9c429a972747727fd4f21efd9b4bdf5a (MD5) / Rejected by Ana Paula Santulo Custódio de Medeiros null (asantulo@rc.unesp.br), reason: - Falta a capa;
- Falta a ficha catalográfica, que deve ser solicitada pelo site da biblioteca e colocada após a página de rosto (na versão online) e no verso da página de rosto (na versão impressa);
- Folha de aprovação está sem as assinaturas e o resultado (verificar com a seção de pós-graduação) on 2018-04-24T12:48:21Z (GMT) / Submitted by Joelson Dayvison Veloso Hermes (joelson.hermes@ifsuldeminas.edu.br) on 2018-05-07T17:02:26Z
No. of bitstreams: 1
Joelson_Vonline.pdf: 2019330 bytes, checksum: 0b929a27a61310386659770f124bcd52 (MD5) / Approved for entry into archive by Ana Paula Santulo Custódio de Medeiros null (asantulo@rc.unesp.br) on 2018-05-07T17:53:12Z (GMT) No. of bitstreams: 1
hermes_jdv_me_rcla.pdf: 2014132 bytes, checksum: 9b8ffcfc6b30d128e5b4dd50f756a88c (MD5) / Made available in DSpace on 2018-05-07T17:53:12Z (GMT). No. of bitstreams: 1
hermes_jdv_me_rcla.pdf: 2014132 bytes, checksum: 9b8ffcfc6b30d128e5b4dd50f756a88c (MD5)
Previous issue date: 2018-02-20 / Neste projeto aplicamos o formalismo de escala com o objetivo de explorar a evolução em direção ao equilíbrio perto de uma bifurcação tangente no mapa logístico. No ponto de bifurcação a órbita segue o caminho descrito por uma função homogênea com expoentes críticos bem definidos. Perto da bifurcação, a convergência para o equilíbrio é exponencial, cujo tempo de relaxação é marcado por uma lei de potência. Para obtermos os expoentes utilizamos dois procedimentos distintos: (1) o primeiro, fenomenológico, envolvendo hipóteses de escala, com o qual determinamos uma lei de escala entre os 3 expoentes críticos; (2) o segundo transforma uma equação de diferenças em uma equação diferencial, sendo resolvida com condições iniciais convenientes. Os resultados analíticos confirmam bem os resultados encontrados numericamente. / In this project we apply the scaling formalism to understand and describe the evolution towards the equilibrium at and near at a tangent bifurcation into logistic map. At the bifurcation the convergence to the steady state is described by a homogeneous function with well de ned critical exponents. Near the bifurcation, the evolution to the equilibrium is described by an exponential function whose relaxation time is described by a power law. We use two di erent approaches to obtain the critical exponents: (1) a phenomenological investigation based on three scaling hypotheses leading to a scaling law relating three critical exponents and; (2) a procedure transforming the di erence equation into a di erential equation which is solved under appropriate conditions. The numerical results give support for the theoretical approach.
|
397 |
Expoentes de escala para mapeamentos discretos bidimensionais /Penalva, Julia. January 2014 (has links)
Orientador: Edson Denis Leonel / Banca: Juliana Antônio de Oliveira / Banca: Ricardo Egydio de Carvalho / Resumo: Uma transição de integrabilidade para não integrabilidade em um conjunto de mapeamentos discretos bidimensionais e que exibem espaços de fase misto é caracterizada neste trabalho. Os espaços de fase dos mapeamentos apresentam um extenso mar de caos que envolve um conjunto de ilhas de estabilidade e é limitado por um conjunto de curvas invariantes do tipo spanning. A descrição da transição de integrabilidade para não integrabilidade é feita utilizando funções de escala para as quantidades médias no espaço de fases ao longo do mar de caos. Expoentes de Lyapunov foram utilizados para a caracterização das órbitas caóticas. Os expoentes críticos são obtidos por simulações numéricas de larga escala. Uma conexão com o mapa padrão é estabelecida como uma aproximação analítica dos expoentes críticos. Após reescalas apropriadas nos eixos do desvio da ação média, invariâncias de escala são observadas / Abstract: A transition from integrability to non-integrability in a set of two-dimensional, nonlinear and area preserving mappings that exhibit mixed phase space is characterized in this work. The phase space of the mappings present an extense chaotic sea surrounding a set of establity islands and is limited by a set of invariant spanning curves. The description of the transition from integrability to nonintegrability is made using scaling functions for average quantities in the phase space along the chaotic sea. The critical exponents are obtained by large scale simulations. A connection to the standard map is established as an analytical approximation for the critical exponents / Mestre
|
398 |
Sobre o caos de Devaney /Pereira, Weber Flávio. January 2001 (has links)
Orientador: Adalberto Spezamiglio / Banca: Heloísa Helena Marino Silva / Banca: Luiz Augusto da Costa Ladeira / Resumo: Neste trabalho estudamos os sistemas dinâmicos caóticos através da definição apresentada por Devaney, composta basicamente de três condições. Investigamos todas as implicações possíveis entre essas condições. Por fim, analisamos o estudo apresentando uma definição mais sucinta e provamos a sua equivalência com a apresentada por Devaney. / Abstract: In this work we study the chaotic dynamic systems through the definition presented by Devaney, basically composed of three conditions. We investigate all the possible implications among these conditions. Finally, we finish the study presenting briefer definition and prove its equivalence to the one presented by Devaney. / Mestre
|
399 |
Leis de escala para o mapa padrão dissipativo /Francisco, Caio Henrique. January 2015 (has links)
Orientador: Edson Denis Leonel / Banca: Ricardo Paupitz Barbosa dos Santos / Banca: Marcus Werner Beims / Resumo: Estudamos neste trabalho algumas propriedades de escala para a dinâmica do mapa padrão dissipativo. O mapa é descrito por duas variáveis dinâmicas sendo elas a ação, I e o ângulo, θ. O modelo é caracterizado por dois parâmetros de controle k e γ. O parâmetro k controla a intensidade da não linearidade ao passo que o parâmetro fornece a intensidade da dissipação. Para γ= 0, temos o caso não dissipativo. Dependendo do valor de k, o espaço de fase é misto exibindo ilhas de periodicidade, curvas invariantes e caos. Para k > 0; 9716..., as curvas invariantes do tipo spanning são destruídas e a ação pode se difundir sem limites ao longo do espaço de fases. Por outro lado quando γ= 0, o sistema é dissipativo e atratores aparecem no espaço de fases.... / Abstract: We considered in this work the characterisation of some scaling properties for the dynamics of the dissipative standard map. The map is described by the use of two dynamical variables, the action I, and the angle θ. The model is also characterised by two control parameters k and γ. The parameter k controls the intensity of the nonlinearity while γ describes the amount of dissipation. For γ= 0 the system is non dissipative. Depending on the parameter k, the phase space is mixed containing either periodic islands, invariant curves and chaos. For k > 0:9716..., the invariant spanning curves are all destroyed allowing the action to diffuse unbounded in the phase space. On the other hand when γ= 0, the system is dissipative and attractors appear in the phase space... / Mestre
|
400 |
Propriedades estatísticas de bilhares abertos /Francisco, Matheus Hansen. January 2015 (has links)
Orientador: Edson Denis Leonel / Banca: Juliano Antônio de Oliveira / Banca: Ricardo Egydio de Carvalho / Resumo: Bilhares são sistemas dinâmicos onde uma partícula de massa m se move, livre de qualquer potencial externo, no interior de uma região limitada por uma fronteira estática ou perturbada, com a qual sofre diversas colisões. Quando a partícula atinge a fronteira, ela sofre uma reflexão especular. Sua velocidade é mantida constante se a fronteira do bilhar for estática ou pode alterar em módulo se o bilhar tiver perturbação temporal na fronteira. No presente trabalho, vamos estudar o caso do bilhar ovóide com fronteira estática e com a fronteira oscilante com o tempo, através da utilização de mapeamentos discretos. Demonstramos de forma detalhada todo o formalismo para a obtenção das equações que descrevem a dinâmica para as duas versões do bilhar. Na versão estática, apresentamos as propriedades do espaço de fases. Em particular mostramos que ele é do tipo misto. É possível encontrar um mar de caos que geralmente envolve ilhas de estabilidade. Também observamos curvas invariantes do tipo spanning. Analisamos o comportamento do mar de caos via expoentes de Lyapunov. Ainda no modelo estático, introduzimos um orifício na fronteira do bilhar e estudamos a probabilidade de sobrevivência e escape das partículas. Verificamos que existe um decaimento da probabilidade de sobrevivência de forma exponencial, e que o valor de seu expoente é da ordem da extensão do buraco divido pelo comprimento total da fronteira. Para a versão do bilhar ovóide com a fronteira dependente do tempo, fazemos a introdução novamente de um orifício na fronteira oscilante e estudamos a probabilidade de sobrevivência e escape para as partículas. Observamos, assim como na versão estática que, o decaimento da probabilidade é de forma exponencial, e que o valor do expoente também é dado pela razão entre a extensão do buraco pelo comprimento total da fronteira / Abstract: Billiards are dynamical systems where a classical particle of mass m moves confined inside a boundary ∂Q to which suffers specular collisions. When the boundary is static, the kinetic energy of the particle is constant, hence its velocity. On the other hand, when a time perturbation is introduced in the boundary, depending on the phase of the moving wall as well the velocity, the particle can gain or lose energy upon collision. In this work, we study the oval billiard considering either the static as well as the time perturbation in the boundary. For the static boundary, the dynamics is described by a two dimensional, nonlinear mapping for the variables θ, corresponding to the polar angle and α denoting the angle the trajectory of the particle does with the tangent at the point of collision. We confirm the phase space is mixed containing both chaos, periodic islands as well as invariant spanning curves corresponding to the so called whispering gallery orbits. The chaotic sea is characterised via Lyapunov exponents. We concentrate particularly on the escape of particles from a hole in the boundary. We give convincing arguments the survival probability is described by an exponential function for short n and may change for a slower decay at larger n due to the stickiness phenomenon. The slope of the exponential decay scales with the relative size of the hole of the boundary. For the time dependent perturbation, the dynamics is described by a four dimensional and nonlinear mapping for the two previous angle variables plus the velocity of the particle and the time. The survival probability is also described by an exponential function for short n and, occasionally, a dynamical trapping produced by stickiness is observed too, therefore slowing down the speed of the decay of the survival probability / Mestre
|
Page generated in 0.0992 seconds