• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 5
  • 3
  • Tagged with
  • 21
  • 21
  • 13
  • 9
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse et régulation mitochondriale chez les cellules du cumulus au cours de la maturation ovocytaire in vitro

Lounas, Amel 01 March 2024 (has links)
Titre de l'écran-titre (visionné le 28 février 2024) / Dans mon projet de doctorat, nous nous sommes attardés à analyser la dynamique et la fonction mitochondriales chez les cellules du cumulus au cours de la maturation ovocytaire *in vitro* (IVM). On s'intéresse particulièrement à la régulation mitochondriale par l'hormone folliculo-stimulante (FSH) chez les cellules du cumulus porcines au cours de l'IVM. L'objectif de notre étude est de comprendre l'effet de la FSH sur la structure et la fonction mitochondriales au cours de l'IVM étant donné que les milieux de culture *in vitro* sont systématiquement supplémentés par cette hormone. Le but de ce projet de thèse est de comprendre la réponse et l'action mitochondriales chez les cellules du cumulus au niveau fondamental au cours de l'IVM. Le projet a été subdivisé en trois grandes phases afin de répondre à notre objectif de recherche. La première vise à décrire la morphologie et l'organisation tridimensionnelle des mitochondries chez les cellules du cumulus juste après la récolte du matériel biologique soient les complexes ovocyte-cumulus (COCs) en utilisant différentes approches expérimentales. La deuxième phase du projet se veut une évaluation globale et complète de l'impact de l'IVM sur la structure et l'activité mitochondriales chez les cellules du cumulus du complexe ovocyte-cumulus. Dans une troisième et dernière phase, on s'intéresse à l'effet de la FSH sur la structure et la fonction mitochondriales en décrivant la dynamique mitochondriale en réponse à la FSH et en mesurant en temps réel la respiration mitochondriale ainsi que la glycolyse basale dans les COCs. De plus, l'effet d'une étape de pré-IVM en présence des niveaux élevés en AMPc sur la réponse mitochondriale à la FSH a aussi été étudié pour mieux comprendre l'implication de ce second messager, connu comme un régulateur important du processus de reprise méiotique chez l'ovocyte. Les cellules du cumulus ont été étudiées dans un contexte de COC afin de conserver les échanges du matériel (métabolites, nucléotides cycliques) au sein du complexe pour caractériser la réponse mitochondriale au cours de l'IVM. Nous avons décrit un réseau mitochondrial complexe en trois dimensions, chez les cellules du cumulus porcines juste après la récolte du matériel biologique. Ce réseau change de phénotype au cours de l'IVM. L'étude approfondie de ces organelles a montré une régulation rapide de la dynamique et la fonction mitochondriales par la FSH au cours de l'IVM. De plus, la FSH induit un changement métabolique rapide et important chez les cellules du cumulus en stimulant la glycolyse et en diminuant la respiration et l'activité mitochondriale. Les résultats suggèrent également que chez les cellules du cumulus, la réponse mitochondriale à la FSH est inhibée par des niveaux élevés en AMPc au cours d'une étape de pré-IVM. Toutefois, les mêmes conditions en terme d'AMPc résultent en une stimulation de la glycolyse mais d'une manière moins importante que la FSH. En conclusion, les résultats présentés dans cette thèse montrent chez les cellules du cumulus, des mitochondries organisées en réseau hautement complexe qui change de structure en réponse à la FSH au cours de l'IVM. Les données obtenues révèlent également une régulation rapide de la réponse mitochondriale et du métabolisme chez les cellules du cumulus par la FSH au cours de l'IVM. De plus, nos travaux suggèrent que les niveaux élevés en AMPc durant une étape de pré-IVM inhibent la réponse des cellules à la FSH. Ces résultats permettent d'améliorer nos connaissances fondamentales sur la dynamique et la fonction mitochondriales chez les cellules du cumulus et de considérer la réponse mitochondriale dans le processus de maturation ovocytaire *in vitro*. Ces résultats pavent la voie au développement de stratégies d'amélioration de l'activité mitochondriale par la supplémentation des milieux de culture ovocytaire *in vitro* avec des modulateurs de la réponse mitochondriale lors des techniques de reproduction assistée. / In my thesis project, we focused on analyzing mitochondrial dynamics and function in cumulus cells during *in vitro* maturation (IVM). We are particularly interested in mitochondrial regulation by follicle-stimulating hormone (FSH) in pig cumulus cells during IVM. The aim of our study is to understand the effect of FSH on mitochondrial structure and function during IVM since the culture media are supplemented with this hormone. The goal is to understand the mitochondrial response and action in cumulus cells at the fundamental level during IVM. The project was divided into three main phases to meet our research objective. The first phase of the project aims to describe the mitochondrial morphology as well as its three-dimensional organization in cumulus cells just after oocyte-cumulus complexes (COCs) retrieval using different experimental approaches. The second phase of the project intends to be a global and comprehensive assessment of the impact of IVM on mitochondrial structure and activity in cumulus cells of the oocyte-cumulus complex. In a third and final phase, we are interested in the effect of FSH on mitochondrial structure and function by describing the mitochondrial dynamics in response to FSH and by measuring in real time mitochondrial respiration as well as basal glycolysis in COCs. In addition, the effect of a pre-IVM culture step with high cAMP levels on the mitochondrial response to FSH has also been studied to better understand the involvement of this second messenger, known as an important regulator of oocyte meiotic resumption process. Cumulus cells have been studied as COC to maintain material transfer (metabolites, cyclic nucleotides) within the complex and to characterize the mitochondrial response during IVM. We have described a complex mitochondrial network in three-dimension in pig cumulus cells immediately after removal from the follicular environment. This network changes phenotype and morphology during IVM. Extensive study of these organelles has shown rapid regulation of mitochondrial dynamics and function by FSH during IVM. In addition, FSH induces rapid and significant metabolic changes in cumulus cells by stimulating glycolysis and decreasing respiration and mitochondrial activity. The results also suggest that in cumulus cells, high levels of cAMP inhibited the mitochondrial response to FSH during a pre-IVM culture step. However, the same conditions stimulate a partial increase in glycolysis. In conclusion, the results presented in this thesis show in cumulus cells, mitochondria organized in a highly complex network that changes structure in response to FSH during IVM. The data obtained also reveal a rapid FSH regulation of mitochondrial response and metabolism in cumulus cells during IVM. Moreover, our work suggests that high cAMP levels during a pre-IVM culture step inhibit the response of cells to FSH. These results allow to improve our fundamental knowledge about mitochondrial dynamics and function in cumulus cells and to consider the mitochondrial response in *in vitro* oocyte maturation process. These results pave the way for the development of improvement strategies of mitochondrial activity by supplementing *in vitro* oocyte culture media with mitochondrial response modulators during assisted reproduction techniques.
2

Rôle de la cytoarchitecture dans la signalisation énergétique du cœur de souris

Piquereau, Jerôme 07 January 2011 (has links) (PDF)
La cellule cardiaque requiert un apport énergétique conséquent qui exige une production et un transfert énergétiques efficaces. Si la production de l'énergie dépend essentiellement des propriétés intrinsèques des mitochondries, il semblerait que l'efficacité du transfert d'énergie du site de production vers les sites consommateurs (ATPases) pourrait être liée à l'architecture spécifique du cardiomyocyte qui conduit à une organisation spatiale singulière des structures internes (mitochondries, réticulum sarcoplasmique, myofilaments). Pour comprendre ce qui lie la cytoarchitecture, la compartimentation cellulaire et la fonction contractile, il a été entrepris d'étudier l'architecture cellulaire et la signalisation énergétique de cardiomyocytes au cours du processus de maturation de la cytoarchitecture et dans un modèle présentant une désorganisation des structures intracellulaires. La première partie de ce travail, réalisée durant le développement postnatal de la souris, a permis de démontré qu'il existe une synchronisation parfaite entre la mise en place de la cytoarchitecture et la maturation fonctionnelle du transfert d'énergie par canalisation directe des nucléotides adényliques entre les mitochondries et les ATPases. Si cette étude apporte un élément qui tendrait à démontrer l'implication de l'architecture cellulaire dans l'efficacité des transferts d'énergie, elle a également mis en avant la maturation très précoce de l'énergétique cellulaire. La mitochondrie faisant partie intégrante de cette architecture et étant modelée par des mécanismes de fusion et de fission, la deuxième étape de ce travail de thèse a consisté à étudier l'implication de la morphologie mitochondriale dans l'énergétique du cardiomyocyte. Il a ainsi été montré que, chez la souris, la diminution d'expression de la protéine OPA1, impliquée dans la fusion mitochondriale, conduit à des perturbations de la morphologie mitochondriale qui n'affectent pas la fonction intrinsèque mitochondriale mais qui altèrent le système de canalisation directe entre les mitochondries et les ATPases des myofilaments. De manière générale, ces résultats démontrent clairement une dépendance des transferts d'énergie à l'architecture cellulaire spécifique de la cellule musculaire cardiaque.
3

Etude du rôle de la protéine Msp1p dans la dynamique mitochondriale et le maintien de l'ADNmt chez la levure Schizosaccharomyces pombe / Role of Msp1p in mitochondrial dynamics and mtDNA maintenance in the yeast schizosaccharomyces pombe

Delerue, Thomas 28 September 2015 (has links)
La dynamique mitochondriale est un processus qui correspond à un équilibre dynamique entre des forces de fusion et de fission qui s'exercent sur les membranes des mitochondries. Quand les forces de fission prédominent les mitochondries apparaissent fragmentées, à l'inverse quand les forces de fusion sont prépondérantes les mitochondries forment un réseau filamenteux et interconnecté. Les principaux acteurs qui contrôlent la dynamique mitochondriale sont de grandes GTPases conservées de la levure à l'homme. Dnm1p (DRP1) est impliquée dans la fission de la membrane externe. Fzo1p (MFN1-2) et Mgm1p/Msp1p (OPA1) sont impliquées dans la fusion respectivement de la membrane externe et interne. L'objet d'étude principal de mon équipe est la protéine Msp1p/OPA1. Mon équipe a montré que la perte de Msp1p chez la levure à fission S. pombe induit la fragmentation des mitochondries, la perte du génome mitochondrial (ADNmt) et conduit à la mort de cette levure petite négative qui ne peut tolérer l'absence d'ADNmt. Afin de mieux comprendre les différents rôles de Msp1p et leurs relations, j'ai recherché des suppresseurs génétiques et pharmacologiques de la létalité induite par la perte de Msp1p. Nous avons identifié des suppresseurs génétiques en supprimant le gène msp1+ par recombinaison homologue dans des levures de fonds génétiques différents. Dans toutes les souches utilisées, des mutations spontanées localisées dans un des 3 gènes codant des protéines de fission (dnm1+, fis1+, caf4+), ont été retrouvées. Ces mutations suppriment à la fois la fragmentation des mitochondries et la perte de l'ADNmt, suggérant que le rôle de Msp1p dans la stabilité de l'ADNmt est une conséquence de sa fonction fusogène. Grâce au criblage de chimiothèques, nous avons identifié 5 composés pharmacologiques capables de supprimer la létalité d'un mutant thermosensible de Msp1p. J'ai entrepris la caractérisation de deux d'entre eux. Le premier supprime à la fois la fragmentation et la perte d'ADNmt induites par l'inactivation de Msp1p et semble cibler la fission mitochondriale. Le second ne supprime que la perte de l'ADNmt, suggérant que la seule fonction essentielle de Msp1p est son rôle dans le maintien de l'ADNmt. Au cours de ces travaux je me suis également intéressé aux mécanismes moléculaires pouvant expliquer la petite négativité de S. pombe. En absence d'ADNmt, les levures petites positives sont viables car capables, contrairement aux levures petites négatives, de maintenir un potentiel de membrane mitochondrial. 6 allèles, nommés ptp et rzl, qui permettent à la levure S. pombe de vivre sans ADNmt ont été décrits il y a plus de 20 ans. Nous les avons identifiées par des approches gène candidat ou séquençage haut débit. Ces allèles correspondent à des versions mutées de gènes codant soit des sous-unités de l'ATP synthase soit des sous-unités du protéasome. Dans le premier cas, ceci nous permet d'impliquer un fonctionnement reverse de l'ATP synthase et du transporteur ADP/ATP dans la restauration du potentiel de membrane mitochondrial et donc dans l'acquisition de la petite positivité chez S. pombe. Dans le second cas, différents mécanismes potentiellement impliqués ont été proposés. L'identification des gènes ptp et rzl devrait permettre une meilleure compréhension du processus de petite positivité/négativité qui reste à ce jour assez obscur. Les suppresseurs génétiques et pharmacologiques capables de supprimer la perte d'ADNmt en supprimant ou non la fragmentation des mitochondries constituent d'excellents outils pour comprendre les mécanismes qui relient la dynamique mitochondriale à la perte de l'ADNmt. La mise en évidence de la conservation des effets des drogues identifiées chez la levure chez les mammifères pourrait avoir un intérêt thérapeutique. En effet, des mutations d'OPA1, l'homologue de Msp1p chez les mammifères, sont responsables d'une neuropathie optique. / Mitochondrial dynamics corresponds to a dynamic balance between two antagonistic forces of fusion and fission, which act on mitochondrial membranes. When fission prevails mitochondria appear fragmented, conversely when fusion predominates mitochondria form a filamentous and interconnected network. The main actors that control mitochondrial dynamics are large GTPases conserved from yeast to human. Dnm1p (DRP1) is involved in the fission of the outer membrane. Fzo1p (MFN1-2) and Mgm1p/Msp1p (OPA1) are involved in the fusion of the outer and inner membrane respectively. My team is interested in the protein Msp1p/OPA1 and showed a few years ago that loss of Msp1p in the fission yeast S. pombe induces mitochondrial fragmentation, mitochondrial genome (mtDNA) depletion and cell death. As a " petite negative ", S. pombe cannot tolerate the absence of mtDNA. To better understand the various role of Msp1p and their relationship, we searched for genetic and pharmacological suppressors of the lethality induced by Msp1p inactivation. We identified genetic suppressors by deleting the msp1+ gene by homologous recombination in various genetic backgrounds. In all strains, we found spontaneous mutations located in one of the 3 genes encoding mitochondrial fission proteins (dnm1+, fis1+, caf4+). These mutations suppress not only mitochondrial fragmentation but also mtDNA loss, suggesting that the role of Msp1p in mtDNA maintenance is a consequence of its fusogenic function. Thanks to chemical libraries screening, we identified 5 pharmacological compounds able to suppress the lethality induced by a Msp1p temperature-sensitive mutant, and characterized two of them. The first one suppresses both mitochondrial fragmentation and mtDNA loss and appears to target mitochondrial fission. The second one suppresses only mtDNA loss, suggesting that mtDNA maintenance is the only essential function of Msp1p. During this work I was also interested in the molecular mechanisms that could explain why S. pombe is " petite negative ". In the absence of mtDNA, the " petite positive " yeasts can survive because, unlike the " petite negative " yeasts, they are able to maintain mitochondrial membrane potential. Six alleles, named ptp and rzl, which allow S. pombe to live without mtDNA were previously described 20 years ago. We identified them by candidate gene and high-throughput sequencing approaches. These alleles correspond to mutated versions of genes encoding either subunits of ATP synthase or subunits of the proteasome. In the first case, this allows us to involve the reverse functioning of the ATP synthase and the ADP/ATP carrier in the restoration of the membrane potential thus converting S. pombe into a " petite positive " yeast. In the second case, various potentially involved mechanisms are proposed. The identification of ptp and rzl genes should allow a better understanding of the " petite positive/negative " properties that remain today rather unclear. Genetic and pharmacological suppressors able to suppress mtDNA loss with or without mitochondrial morphology recovery, represent interesting tools to understand the mechanisms that link mitochondrial dynamics to mtDNA loss. Furthermore, showing that the effects of the compound that we identified in yeast are conserved in mammals may have a therapeutic value. Indeed, mutations in OPA1, the Msp1p homologous in mammals, are responsible for an optic neuropathy.
4

Rôle de la cytoarchitecture dans la signalisation énergétique du cœur de souris / Role of cell architecture in energetic signalling of mouse heart

Piquereau, Jérôme 07 January 2011 (has links)
La cellule cardiaque requiert un apport énergétique conséquent qui exige une production et un transfert énergétiques efficaces. Si la production de l’énergie dépend essentiellement des propriétés intrinsèques des mitochondries, il semblerait que l’efficacité du transfert d’énergie du site de production vers les sites consommateurs (ATPases) pourrait être liée à l’architecture spécifique du cardiomyocyte qui conduit à une organisation spatiale singulière des structures internes (mitochondries, réticulum sarcoplasmique, myofilaments). Pour comprendre ce qui lie la cytoarchitecture, la compartimentation cellulaire et la fonction contractile, il a été entrepris d’étudier l’architecture cellulaire et la signalisation énergétique de cardiomyocytes au cours du processus de maturation de la cytoarchitecture et dans un modèle présentant une désorganisation des structures intracellulaires. La première partie de ce travail, réalisée durant le développement postnatal de la souris, a permis de démontré qu’il existe une synchronisation parfaite entre la mise en place de la cytoarchitecture et la maturation fonctionnelle du transfert d’énergie par canalisation directe des nucléotides adényliques entre les mitochondries et les ATPases. Si cette étude apporte un élément qui tendrait à démontrer l’implication de l’architecture cellulaire dans l’efficacité des transferts d’énergie, elle a également mis en avant la maturation très précoce de l’énergétique cellulaire. La mitochondrie faisant partie intégrante de cette architecture et étant modelée par des mécanismes de fusion et de fission, la deuxième étape de ce travail de thèse a consisté à étudier l’implication de la morphologie mitochondriale dans l’énergétique du cardiomyocyte. Il a ainsi été montré que, chez la souris, la diminution d’expression de la protéine OPA1, impliquée dans la fusion mitochondriale, conduit à des perturbations de la morphologie mitochondriale qui n’affectent pas la fonction intrinsèque mitochondriale mais qui altèrent le système de canalisation directe entre les mitochondries et les ATPases des myofilaments. De manière générale, ces résultats démontrent clairement une dépendance des transferts d’énergie à l’architecture cellulaire spécifique de la cellule musculaire cardiaque. / The cardiac cell function requires a large amount of energy and therefore needs a high efficiency of energetic production and energetic transfer. While the energy production depends on the intrinsic properties of the mitochondria, it appears that the efficiency of energetic transfers from the main producers (mitochondria) to consumers (ATPases) could be related to the specific architecture of the cardiomyocyte, which ensures a unique spatial organization of internal structures (mitochondria, sarcoplasmic reticulum, myofilaments). In order to reveal the role of mitochondrial network organization in cardiac energy metabolism, we studied the cellular architecture and the energetic signalling of cardiomyocytes in the process of maturation of the cytoarchitecture and in a model which exhibits a perturbation of the mitochondrial dynamics. The first part of this work, which was performed during postnatal development of the mouse, showed the perfect synchronisation between the establishment of the cytoarchitecture and the maturation of the transfer of energy by direct channelling of adenine nucleotides between mitochondria and ATPases. While this study provides an element which would demonstrate the involvement of cellular architecture in the efficiency of energy transfer, it also highlighted the very early maturation of the energetic system of the cell. Knowing that the mitochondria are an integral part of the cell architecture and that the mitochondrial network is controlled by fusion and fission mechanisms, the second step of this work consisted in investigating the involvement of mitochondrial dynamics in cardiomyocyte energetics. Our work has shown that a decrease in expression of OPA1, a protein responsible for mitochondrial fusion, leads to disruption of mitochondrial morphology which does not affect intrinsic mitochondrial function but affects the direct channelling of ATP and ADP between mitochondria and ATPases of the myofilaments. Overall, these results clearly demonstrate that energy transfer in cardiomyocytes strictly depends on specific cellular architecture.
5

Étude de la dynamique mitochondriale dans des cellules cutanées humaines : Mise en place de modèles pour des applications en cosmétologie / Mitochondrial dynamic in human skin cells : models development for cosmetic applications

Jugé, Romain 20 June 2016 (has links)
La peau est un épithélium spécialisé vital et fragile, qui évolue avec l’âge et est influencé par l’environnement, notamment les radiations solaires. Des données sont disponibles sur la réponse du réseau mitochondrial et le devenir des mitochondries endommagées en réponse à des stress chimiques et environnementaux dans plusieurs systèmes expérimentaux, mais ces processus restent peu étudiés dans les cellules cutanées. Dans ce contexte, le projet de thèse visait à analyser l’effet (i) de l’irradiation UVB sur la dynamique mitochondriale (en particulier la fragmentation des mitochondries) dans des kératinocytes primaires humains normaux, qui constituent la première ligne de défense contre les agressions externes ; (ii) d’un traitement par des poisons mitochondriaux sur les mitochondries contenues dans des kératinocytes ou des fibroblastes primaires humains normaux. Dans un premier axe de la thèse, nous avons mis au point une méthode originale (Mitoshape) basée sur l’imagerie confocale, permettant d’estimer à la fois qualitativement et quantitativement la morphologie du réseau mitochondrial dans des cellules vivantes après irradiation UVB. Grâce à cette technologie, nous avons pu montrer que les UVB induisaient une fragmentation du réseau mitochondrial dans les kératinocytes primaires, dont nous avons étudié les acteurs biochimiques. Dans un deuxième axe, nous avons montré que les poisons mitochondriaux avaient la capacité d’endommager les mitochondries dans des kératinocytes et des fibroblastes humains primaires et induisaient une autophagie générale sans toutefois exclure la présence d’une mitophagie dépendante de la voie PINK1/PARKIN. Outre son intérêt fondamental, ce travail (réalisé en collaboration avec la société de cosmétologie SILAB dans le cadre d’un partenariat industriel CIFRE) ouvre la voie à l’identification d’actifs naturels capables de préserver et/ou restaurer les paramètres fonctionnels mitochondriaux suite à des stress. / The skin is a specialized type of epithelium, both vital and fragile, which evolves with age and is continuously exposed to environmental stresses, such as solar radiations. While data is available about the response of the mitochondrial network and the fate of damaged mitochondria after chemical or environmental stresses in numerous experimental systems, little is known about these processes in skin cells. The aim of the present thesis was to study the impact (i) of UVB irradiation on mitochondrial dynamics (especially mitochondrial fragmentation) in normal human epidermal keratinocytes, which represent the first line of defence against environmental insults; (ii) of poisoning mitochondria of keratinocytes and normal human fibroblasts with chemical drugs. In a first axis, we developed an original method (called Mitoshape) based on confocal microscopy, to estimate qualitatively and quantitatively the morphology of the mitochondrial network within live cells following UVB irradiation. Using this technology, we demonstrated that UVB irradiation induces mitochondrial fragmentation in normal human keratinocytes, and studied the biochemical actors involved in this response. In a second axis, we showed that the use of mitochondrial poisons could damage mitochondria of keratinocytes and normal human fibroblasts and induce bulk autophagy, although it is not possible to formally rule out the involvement of a PINK1/PARKIN-dependent pathway of mitophagy. In addition to its fundamental interest, this work (performed in collaboration with the cosmetic company SILAB in the context of a CIFRE PhD fellowship from ANRT) paves the way for the screening of novel bioactive agents able to protect and restore mitochondria following stresses.
6

The role of PKD in mitochondrial fission during mitosis / Le rôle de la protéine kinase D dans la fission mitochondriale lors de la mitose

Bielska, Olga 21 March 2018 (has links)
Plusieurs études ont découvert et renforcé l'implication de la dynamique mitochondriale dans le cancer. J'ai découvert un rôle inattendu des protéines kinases de la famille PKD dans la fission mitochondriale. La perte de l'activité PKD a conduit à un blocage de la fission et a entraîné une élongation significative des mitochondries par fusion continue. D'un point de vue mécanique, nous avons montré que les protéines PKD régulent la dynamique mitochondriale en activant le facteur de fission mitochondrial (MFF) par phosphorylation de plusieurs sites. MFF agit comme un récepteur principal de la GTPase DRP1, qui resserre les mitochondries, et il est essentiel à une bonne division mitochondriale. Les trois membres de la famille PKD peuvent phosphoryler MFF. La phosphorylation de MFF est médiée par PKD et la fragmentation mitochondriale se produit pendant la mitose. Comme démontré dans études sur les phosphoprotéomes, la phosphorylation du MFF est augmentée dans les cancers très mitotiques. Ainsi, l'axe de signalisation PKD-MFF régulant la dynamique mitochondriale en mitose pourrait devenir une voie thérapeutique attrayante pour le traitement du cancer. / Over the last two decades, multiple studies have uncovered and strengthen the implication of mitochondrial dynamics in cancer. During my thesis, I discovered an unanticipated role for the PKD kinase family in mitochondrial fission. Loss of PKD activity led to blockade of mitochondrial fission and resulted in a significant elongation of mitochondria by unopposed fusion. Mechanistically, we showed that PKDs regulated mitochondrial dynamics by activating the mitochondrial fission factor (MFF) through phosphorylation of multiple sites. MFF acts as a main receptor for the large GTPase DRP1, which constricts mitochondria, and it is critical for proper mitochondrial division. All three PKD family members could phosphorylate MFF. PKD-mediated MFF phosphorylation and mitochondrial fragmentation occurred specifically during mitosis. As MFF phosphorylation was found to be significantly upregulated in highly mitotic cancers, which was evidenced in several global phosphoproteome studies, the discovered PKD-MFF signaling axis regulating mitochondrial dynamics in mitosis could become an attractive therapeutic avenue for cancer treatment.
7

Identification du mécanisme de ciblage pour la dégradation post-fécondation des mitochondries paternelles dans l'embryon précoce de C. elegans / Identification of the mechanism of paternal mitochondria targeting prior to fertilization in the early embryo of C. elegans

Al Rawi, Sara 27 November 2015 (has links)
Chez la majorité des espèces, les mitochondries et leur ADN sont hérités de manière uniparentale maternelle. Au moment de la fécondation, le spermatozoïde entre dans l'ovocyte avec ses mitochondries et leur ADN menant à se demander pourquoi et comment les mitochondries paternelles ne sont plus détectées chez le nouvel individu. Chez le ver C. elegans, les mitochondries d’origine spermatique sont activement dégradées par autophagie dans l’embryon une cellule. Les marqueurs de l’autophagie chez le ver, les protéines LGG-1 et LGG-2, sont observés autour des organites d’origine spermatique après la fécondation et l’interférence avec l’autophagie bloque l’élimination de ces organites. Néanmoins, il n’est toujours pas clair comment ce ciblage s’effectue ni le rôle des différentes protéines de l’autophagies impliquées dans le processus. La première partie des résultats montre que LGG-2 permet le transport des autophagosomes et de leur contenu vers la zone pericentrosomale afin de faciliter leur fusion avec les lysosomes qui se concentrent dans cette zone. En parallèle, j’ai testé plusieurs hypothèses afin d’identifier les mécanismes de ciblage des mitochondries d’origine spermatique. J’ai montré que l’ubiquitine joue un rôle dans le recrutement de la protéine LGG-1 autour des organites spermatiques. J’ai également décrit plusieurs propriétés des mitochondries spermatiques et ovocytaires qui semblent jouer un rôle dans le recrutement de la machinerie de l’autophagie. Ainsi, la dégradation des mitochondries d’origine spermatique représente une forme originale et physiologique de mitophagie. / In most animal species, mitochondria and their DNA are maternally inherited. Upon fertilization, the spermatozoid and its mitochondria enter into the oocyte leading to the questions why and how are those mitochondria not detected in the new born. The sperm derived mitochondria are selectively degraded by autophagy in C. elegans. The autophagy proteins, LGG-1 and LGG-2, are recruited around sperm-derived organelles upon fertilization in the early embryo of C. elegans and the interference with the autophagy blocks the degradation of those organelles. The mechanism permitting this specific targeting of the paternal mitochondria and the role of the different autophagy proteins are still unclear. First, we showed that LGG-2 plays an important role in the clearance of sperm-derived organelles by targeting them to the pericentrosomal area to facilitate their fusion with lysosomes. In parallel, I tested several hypotheses to identify the mechanism permitting the specific targeting of sperm-derived mitochondria. I showed that the ubiquitin plays a role in the recruitment of LGG-1 around sperm-derived organelles and described several properties of the sperm and oocyte-derived mitochondria that are likely to play an important role for the recruitment of the autophagy machinery. This led us to conclude that sperm derived mitochondria degradation represent an original physiologic mitophagy.
8

Étude des effets d'un régime cétogène et d'une restriction alimentaire sur les activités mitochondriales et la traduction, dans un modèle murin FUS-SLA

Gelon, Pauline Angèle 21 March 2025 (has links)
La Sclérose Latérale Amyotrophique est une maladie neurodégénérative qui entraîne une perte de motricité et une létalité. La Démence Fronto-Temporale se caractérise par la dégénérescence des lobes frontaux et temporaux, traduit par des changements de comportement et/ou de langage. En général, la DFT n'affecte pas le système moteur, cependant dans certains cas une dégénérescence des motoneurones est observée chez les patients atteints de DFT. Cependant, il a été démontré que 50 % des personnes atteintes de la SLA présenteraient un trouble comportemental. Ainsi, il existe un chevauchement entre ces deux syndromes, et ceux-ci sont désormais considérés comme des manifestations différentes d'un même spectre de maladies neuropathologiques, appelé SLA-DFT. Des mutations dans le gène codant pour la protéine de liaison ADN/ARN, Fused in sarcoma (FUS), sont associées au développement de cas de SLA familiale et de DFT. Une caractéristique pathologique des mutations FUS de la SLA-DFT est son changement de localisation dans le cytoplasme. En effet, la protéine FUS est reconnue comme ayant un impact sur la régulation de la traduction lorsqu'elle est délocalisée, par le biais de sa capacité de liaison à l'ARN et d'association avec différentes protéines, dont les sous-unités ribosomiques. Les polyribosomes, composants nécessaires à la traduction de l'ARNm, représentent un assemblage macromoléculaire et sont localisés dans le cytoplasme, liés au réticulum endoplasmique ou circulant librement. Nous avons récemment démontré que FUS peut réguler la traduction de l'ARN au niveau du polyribosome en réponse à l'inhibition de la voie de signalisation mTOR. La Mammalian Target of Rapamycin (mTOR) est une voie de signalisation métabolique essentielle à la croissance et au métabolisme des cellules mammifères. Cette voie est régulée par de nombreux signaux intracellulaires et extracellulaires, dont l'apport alimentaire. L'alimentation est une source d'énergie d'importance vitale, elle affecte les fonctions cérébrales et fournit de l'énergie directe à l'ensemble de l'organisme. Il existe des preuves que l'apport alimentaire affecte directement ou indirectement la progression de la maladie. Les mitochondries sont fortement impliquées dans l'adaptation aux changements d'apports alimentaires. Le dysfonctionnement de ces organites est d'ores et déjà connu dans le potentiel développement de la SLA. De plus, des études récentes ont montrés que la surexpression de FUS dans les cellules humaines induirait un dysfonctionnement de mitochondrial dû à la séquestration d'ARNm nécessaires à la respiration mitochondriale. En se basant sur ces i faits, notre hypothèse est que certains apports alimentaires peuvent moduler la traduction dépendante du FUS via la signalisation mTOR et, dans le cas de mutations FUS associées à la SLA, peuvent atténuer/exacerber les phénotypes de la SLA, incluant le dysfonctionnement mitochondrial. Dans ce travail, nous démontrons que l'utilisation d'un régime cétogène améliorait significativement les performances cognitives et motrices des souris ALS-FUSR521G. De plus, ce régime cétogène semble avoir une influence sur l'état traductionnel de ces souris ALS-FUS, en augmentant les taux de traduction chez ces animaux. Ce résultat est également observable lorsque ces mêmes souris sont soumises à un jeûne. De manière surprenante, l'étude de la respiration mitochondriale dans les cellules du cortex et du foie n'a révélé aucunes variations lorsque les souris ALS-FUS sont traitées avec un régime cétogène. Cependant, le jeûne semble elle influencer la respiration mitochondriale des cellules du foie issu de souris ALS-FUS. Enfin, nous avons évalué la fonction mitochondriale par l'analyse d'une protéine mitochondriale, Translocase of Outer Mitochondrial Membrane 20 (TOMM20), située dans la membrane externe mitochondriale ou le réticulum endoplasmique associé à la mitochondrie. L'étude de cette protéine par Western Blot, a permis de révéler un dysfonctionnement mitochondrial dans notre modèle murin ALS-FUS, ainsi qu'une diminution de l'expression de celle-ci chez nos souris traitées diététiquement (ALS-FUS et WT). Nos travaux métaboliques et biologiques réalisés sur le modèle de souris ALSFUSR521G ont permis la mise en évidence du potentiel thérapeutique des variations de prise alimentaire. Ainsi, des informations sur la physiologie et la pathogenèse du développement de la SLA chez ce modèle murin ont été découvertes, fournissant ainsi de nouvelles cibles moléculaires pour de futures interventions chez ces animaux, possiblement applicables chez les patients. / Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that leads to loss of motor skills and lethality. Fronto-Temporal Dementia (FTD) is characterized by degeneration of the frontal and temporal lobes, reflected in changes in behavior and/or language. In general, FTD does not affect the motor system, although in some cases motor neuron degeneration is observed in FTD patients. However, it has been shown that 50% of people with ALS have a behavioral disorder. Thus, there is an overlap between these two syndromes, and they are now considered to be different manifestations of the same neuropathological disease spectrum, called ALS-DFT. Mutations in the gene coding for the DNA/RNA binding protein, Fused in sarcoma (FUS), are associated with the development of familial ALS and FTD. A pathological feature of FUS mutations in ALSFTD is their altered location in the cytoplasm. Indeed, the FUS protein is known to have an impact on translation regulation when delocalized, through its ability to bind to RNA and to associate with various proteins, including ribosomal subunits. Polyribosomes, the components required for mRNA translation, represent a macromolecular assembly and are localized in the cytoplasm, bound to the endoplasmic reticulum or circulating freely. We have recently demonstrated that FUS can regulate RNA translation at the polyribosome level in response to inhibition of the mTOR signaling pathway. The Mammalian Target of Rapamycin (mTOR) is a metabolic signaling pathway essential for growth and metabolism in mammalian cells. This pathway is regulated by numerous intracellular and extracellular signals, including dietary intake. Food is a vitally important source of energy, affecting brain function and providing direct energy to the whole body. There is evidence that dietary intake directly or indirectly affects disease progression. Mitochondria are heavily involved in adapting to changes in dietary intake. Dysfunction of these organelles is already known to play a role in the potential development of ALS. Moreover, recent studies have shown that overexpression of FUS in human cells induces mitochondrial dysfunction due to the sequestration of mRNA required for mitochondrial respiration. Based on this evidence, we hypothesize that certain dietary intakes may modulate FUS-dependent translation via mTOR signaling and, in the case of ALSassociated FUS mutations, may attenuate/exacerbate ALS phenotypes, including mitochondrial dysfunction. In this work, we demonstrate that the use of a ketogenic diet significantly improved cognitive and motor performance in ALS-FUSR521G mice. In addition, the ketogenic diet appears to influence the translational status of these ALS FUS mice, increasing translation rates in these animals. This result was also observed when these same mice were subjected to fasting. Surprisingly, the study of mitochondrial respiration in cortical and liver cells revealed no variations when ALS-FUS mice were treated with a ketogenic diet. However, fasting appears to influence mitochondrial respiration in liver cells from ALS-FUS mice. Finally, we assessed mitochondrial function by analyzing a mitochondrial protein, Translocase of Outer Mitochondrial Membrane 20 (TOM20), located in the mitochondrial outer membrane or mitochondriaassociated endoplasmic reticulum. Western blot analysis of this protein revealed mitochondrial dysfunction in our ALS-FUS mouse model, as well as a decrease in its expression in our diet-treated mice (ALS-FUS and WT). Our metabolic and biological work on the ALS-FUSR521G mouse model has highlighted the therapeutic potential of variations in food intake. Thus, information on the physiology and pathogenesis of ALS development in this mouse model has been discovered, providing new molecular targets for future interventions in these animals, possibly applicable to patients.
9

Étude de la régulation de la protéine mitochondriale MAVS au cours de l’immunité innée antivirale / Study of the regulation of MAVS, a mitochondrial protein involves in antiviral innate immunity

Castanier, Céline 08 September 2011 (has links)
L’immunité innée représente la première ligne de défense d’un organisme face à une infection virale, en engendrant une réponse rapide capable de restreindre la menace microbienne. Dans la cellule, les récepteurs Toll-likes (TLRs) et les hélicases cytosoliques RIG-I like (RLRs) représentent les deux systèmes majeurs de reconnaissance des virus. Les acides nucléiques viraux sont notamment reconnus les hélicases cytosoliques RIG-I et MDA5. Ces deux protéines possèdent deux domaines CARD impliqués dans le recrutement de la protéine adaptatrice MAVS, capable d’induire l’activation des promoteurs interférons (IFNs) de type I et de NF-B pour la mise en place d’une réponse antivirale. De façon surprenante, MAVS est localisée au niveau de la mitochondrie et a besoin de cette association au compartiment mitochondrial pour exercer sa fonction. Bien que de nombreuses études aient montré le rôle crucial de la protéine mitochondriale MAVS dans la signalisation antivirale des RLRs, sa régulation est encore mal connue à ce jour. Ce travail de doctorat a permis de mettre en évidence que la dégradation de MAVS suite à une infection virale est nécessaire à la transduction du signal antiviral. Nous avons ainsi déterminé que l’E3 ubiquitine ligase TRIM25 induit l’ubiquitination puis la dégradation de MAVS quelques heures après une infection virale. De plus, nous avons montré que l’activation du signalosome aboutissant à la production des IFNs de type I et dépendant de MAVS n’a lieu que suite à sa translocation de la mitochondrie vers le cytosol permise par la dégradation de MAVS. Enfin, nous avons mis en évidence le rôle essentiel de l’élongation du réseau mitochondrial suite à une infection virale pour la transduction du signal dépendant de MAVS. / Innate Immunity acts as the first line of the host defense against viral infection, providing a rapid response to restrict the microbial threats. Toll-like receptors (TLRs) and cytosolic RIG-I-like helicases (RLRs) are the two major receptor systems for detecting virus. Viral nucleic acids are recognised by the helicases RIG-I and MDA5. These receptors contain two CARD domains involve in the recruitment of the mitochondrial antiviral signaling adaptor MAVS whose activation triggers a rapid production of type 1 interferons (IFNs) and of pro-inflammatory cytokines. Interestingly, it has been reported that MAVS must be localized to mitochondria to exert its function. While MAVS is essential for this signaling, its function and regulation remain unclear. In this work, we report that RLR activation triggers MAVS ubiquitination by the E3 ubiquitin ligase TRIM25 and marks it for proteasomal degradation concomitantly with downstream signaling. MAVS appears to function as a recruitment platform to first assemble a signaling complex, then the proteasome-mediated MAVS degradation is required to unleash into the cytosol this signaling complex allowing the signalosome activation and ensuing type I IFNs production. Futhermore, we reported that mitochondrial dynamics regulate MAVS-mediated signaling after viral infection.
10

Le rôle de l’AMPK dans le vieillissement et la perte de plasticité neuronale liée au vieillissement chez C. elegans / Role of AMPK in aging and age-related loss of behavioral plasticity in C. elegans

Escoubas-Güney, Caroline 04 May 2018 (has links)
La progression de l’espérance de vie observée au cours du XXième siècle a été accompagnée par une augmentation massive de l’incidence des maladies liées à l’âge et en particulier des maladies neurodégénératives. Malheureusement, les thérapeutiques actuelles ciblant principalement les anomalies d’agrégation protéique caractérisant ces maladies, tel que la maladie d’Alzheimer, ont échoué au niveau des essais cliniques. De récentes études épidémiologiques ont suggéré un lien entre la dysfonction métabolique et les maladies neurodégénératives. Par conséquent, une approche alternative pour développer des nouveaux médicaments serait se cibler les voies de signalisation métaboliques perturbées dans les modèles de maladie d’Alzheimer. L’AMPK (AMP activated protein kinase) est une enzyme activée par les bas niveaux d’énergie cellulaire via la détection du taux AMP : ATP. Une fois activée, l’AMPK allonge la durée de vie d’organismes modèles et protège contre le développement de pathologies liées à l’âge telle que les maladies neurodégénératives. De plus, l’AMPK régule l’homéostasie mitochondriale et les réseaux mitochondriaux chez les mammifères. Cependant, il reste à savoir si l’AMPK protège contre le développement de pathologies neurodégénératives via la régulation de la structure mitochondriale. Lors de ces travaux, nous avons utilisé un protocole d’apprentissage et de mémoire chez C. elegans pour mesurer la fonction neuronale. Nous avons montré que les nématodes exprimant le peptide amyloïde Aβ1-42 dans les neurones avait une capacité d’apprentissage détériorée. Ce déficit a pu être restauré par l’activation constitutionnelle de l’AMPK. Nous montrons également que l’activation de l’AMPK améliore les capacités d’apprentissage des nématodes sauvages en induisant la fusion des mitochondries. En effet, les vers mutés pour le gène responsable de la fusion mitochondriale ont une capacité d’apprentissage diminuée, laquelle peut être restaurée par le rétablissement de la fusion mitochondriale, spécifiquement dans les neurones. Des résultats supplémentaires suggèrent que l’AMPK induirait ses effets bénéfiques sur la fonction neuronale en inhibant le facteur de transcription CRTC-1 (CREB-regulated transcriptional co-activator 1). Nos résultats tendent à montrer que cibler le métabolisme cellulaire neuronal représenterait une option thérapeutique viable afin de maintenir les fonctions neuronales dans le cadre de pathologies neurodégénératives. / The dramatic increase in life expectancy during the 20th century was accompanied by a resultant epidemic of age-related pathologies including neurodegenerative diseases. Unfortunately, current therapeutics primarily focusing on protein misfolding aspects of diseases such as Alzheimer’s Disease (AD) have been unsuccessful in the clinical trials. Recent epidemiological studies have suggested a strong association between metabolic dysfunction and neurodegeneration. Therefore, an alternative approach is to target metabolic pathways disrupted in AD models for therapeutics. AMP activated protein kinase (AMPK) is activated in a low energy state via sensing the AMP: ATP ratio. Once active, AMPK promotes longevity in model organism and protects against a wide range of age related diseases including neurodegenerative diseases. In addition, AMPK regulates mitochondrial homeostasis and mitochondrial networks in mammals. However, whether mitochondrial regulation causally links AMPK to protection against neurodegenerative disease is unknown. Here we use a learning and memory protocol in C. elegans as readout of neuronal function. We show that nematodes expressing the toxic amyloid peptide Aβ1-42 in the neurons display impaired learning ability, which can be rescued by constitutive activation of AMPK (CA-AMPK). We further show that CA-AMPK enhances learning ability in wild type nematodes by promoting mitochondrial fusion. Indeed, fusion deficient worms show impaired learning, which can be rescued by restoring mitochondrial fusion specifically in the neurons. Additional results suggest that AMPK might promote its beneficial effects on neuronal function via inhibition of CREBregulated transcriptional co-activator 1 (CRTC-1). Our results show that targeting neuronal metabolism may be a viable therapeutic option to restore neuronal function in the context of neurodegenerative diseases.

Page generated in 0.0645 seconds