Spelling suggestions: "subject:"e modes""
41 |
Codes correcteurs d'erreurs convolutifs non commutatifs / Non-commutative convolutional error correcting codesCandau, Marion 09 December 2014 (has links)
Un code correcteur d'erreur ajoute de la redondance à un message afin de pouvoir corriger celui-ci lorsque des erreurs se sont introduites pendant la transmission. Les codes convolutifs sont des codes performants, et par conséquent, souvent utilisés. Le principe d'un code convolutif consiste à se fixer une fonction de transfert définie sur le groupe des entiers relatifs et à effectuer la convolution d'un message avec cette fonction de transfert. Ces codes ne protègent pas le message d'une interception par une tierce personne. C'est pourquoi nous proposons dans cette thèse, des codes convolutifs avec des propriétés cryptographiques, définis sur des groupes non-commutatifs. Nous avons tout d'abord étudié les codes définis sur le groupe diédral infini, qui, malgré de bonnes performances, n'ont pas les propriétés cryptographiques recherchées. Nous avons donc étudié ensuite des codes convolutifs en bloc sur des groupes finis, avec un encodage variable dans le temps. Nous avons encodé chaque message sur un sous-ensemble du groupe différent à chaque encodage. Ces sous-ensembles sont générés de façon chaotique à partir d'un état initial, qui est la clé du cryptosystème symétrique induit par le code. Nous avons étudié plusieurs groupes et plusieurs méthodes pour définir ces sous-ensembles chaotiques. Nous avons étudié la distance minimale des codes que nous avons conçus et montré qu'elle est légèrement plus petite que la distance minimale des codes en blocs linéaires. Cependant, nous avons, en plus, un cryptosystème symétrique associé à ces codes. Ces codes convolutifs non-commutatifs sont donc un compromis entre correction d'erreur et sécurité. / An error correcting code adds redundancy to a message in order to correct it when errors occur during transmission.Convolutional codes are powerful ones, and therefore, often used. The principle of a convolutional code is to perform a convolution product between a message and a transfer function, both defined over the group of integers. These codes do not protect the message if it is intercepted by a third party. That is why we propose in this thesis, convolutional codes with cryptographic properties defined over non-commutative groups. We first studied codes over the infinite dihedral group, which despite good performance, do not have the desired cryptographic properties. Consequently, we studied convolutional block codes over finite groups with a time-varying encoding. Every time a message needs to be encoded, the process uses a different subset of the group. These subsets are chaotically generated from an initial state. This initial state is considered as the symmetric key of the code-induced cryptosystem. We studied many groups and many methods to define these chaotic subsets. We examined the minimum distance of the codes we conceived and we showed that it is slightly smaller than the minimum distance of the linear block codes. Nevertheless, our codes have, in addition, cryptographic properties that the others do not have. These non-commutative convolutional codes are then a compromise between error correction and security.
|
42 |
Repeated-root Cyclic Codes And Matrix Product CodesOzadam, Hakan 01 December 2012 (has links) (PDF)
We study the Hamming distance and the structure of repeated-root cyclic codes, and their generalizations to constacyclic and polycyclic codes, over finite fields and Galois rings. We develop a method to compute the Hamming distance of these codes. Our computation gives the Hamming distance of constacyclic codes of length $np^s$ in many cases. In particular, we determine the Hamming distance of all constacyclic, and therefore cyclic and negacyclic, codes of lengths p^s and 2p^s over a finite field of characteristic $p$. It turns out that the generating sets for the ambient space obtained by torsional degrees and strong Groebner basis for the ambient space are essentially the same and one can be obtained from the other.
In the second part of the thesis, we study matrix product codes. We show that using nested constituent codes and a non-constant matrix in the construction of matrix product codes with polynomial units is a crucial part of the construction. We prove a lower bound on the Hamming distance of matrix product codes with polynomial units when the constituent codes are nested. This generalizes the technique used to construct the record-breaking examples of Hernando and Ruano.
Contrary to a similar construction previously introduced, this bound is not sharp and need not hold when the constituent codes are not nested. We give a comparison of this construction with a previous one. We also construct new binary codes having the same parameters, of the examples of Hernando and Ruano, but non-equivalent to them.
|
43 |
Application of residue codes for error detection in modern computersSullivan, Michael Brendan, 1985- 21 February 2011 (has links)
Residue codes have successfully been used for decades as a low overhead method of arithmetic error detection. This work explores the design space of residue checking for error detection in processors with modern word sizes and technology nodes. The area overheads of detecting arithmetic errors are considered for a variety of processor configurations, ranging from those best suited for embedded processors to those best for high-performance computers. The ultimate goal of this work is to enable the study of low overhead arithmetic error protection and correction in a wider variety of computer architectures than has previously been attempted in a systematic manner. / text
|
44 |
Trapping Sets in Fountain Codes over Noisy ChannelsOROZCO, VIVIAN 04 November 2009 (has links)
Fountain codes have demonstrated great results for the binary erasure channel and have already been incorporated into several international standards to recover lost packets at the application layer. These include multimedia broadcast/multicast sessions and digital video broadcasting on global internet-protocol. The rateless property of Fountain codes holds great promise for noisy channels. These are more sophisticated mathematical models representing errors on communications links rather than only erasures. The practical implementation of Fountain codes for these channels, however, is hampered by high decoding cost and delay.
In this work we study trapping sets in Fountain codes over noisy channels and their effect on the decoding process. While trapping sets have received much attention for low-density parity-check (LDPC) codes, to our knowledge they have never been fully explored for Fountain codes. Our study takes into account the different code structure and the dynamic nature of Fountain codes. We show that 'error-free' trapping sets exist for Fountain codes. When the decoder is caught in an error-free trapping set it actually has the correct message estimate, but is unable to detect this is the case. Thus, the decoding process continues, increasing the decoding cost and delay for naught. The decoding process for rateless codes consists of one or more decoding attempts. We show that trapping sets may reappear as part of other trapping sets on subsequent decoding attempts or be defeated by the reception of more symbols. Based on our observations we propose early termination methods that use trapping set detection to obtain improvements in realized rate, latency, and decoding cost for Fountain codes. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2009-10-29 14:33:06.548
|
45 |
Codes additifs et matrices MDS pour la cryptographie / Additive codes and MDS matrices for the cryptographic applicationsEl Amrani, Nora 24 February 2016 (has links)
Cette thèse porte sur les liens entre les codes correcteurs d'erreurs et les matrices de diffusion linéaires utilisées en cryptographie symétrique. L'objectif est d'étudier les constructions possibles de codes MDS additifs définis sur le groupe (Fm2, +) des m-uplets binaires et de minimiser le coût de l'implémentation matérielle ou logicielles de ces matrices de diffusion. Cette thèse commence par l'étude des codes définis sur un anneau de polynômes du type F[x]/f(x), qui généralisent les codes quasi-cycliques. Elle se poursuit par l'étude des codes additifs systématiques définis sur (Fm2, +) et leur lien avec la diffusion linéaire en cryptographie symétrique. Un point important de la thèse est l'introduction de codes à coefficient dans l'anneau des endomorphismes de Fm2. Le lien entre les codes qui sont des sous-modules à gauche et les codes additifs est mis en évidence. La dernière partie porte sur l'étude et la construction de matrices de diffusion MDS ayant de bonnes propriétés pour la cryptographie, à savoir les matrices circulantes, les matrices dyadiques, ainsi que les matrices ayant des représentations creuses minimisant leur implémentation. / This PhD focuses on the links between error correcting codes and diffusion matrices used in cryptography symmetric. The goal is to study the possible construction of additives MDS codes defined over the group (Fm2, +) of binary m-tuples and minimize cost of hardware or software implementation of these diffusion matrices. This thesis begins with the study of codes defined over the polynomial ring F[x]/f(x), these codes are a generalization of quasi-cyclic codes, and continues with the study of additive systematic codes over (Fm2, +) and there relation with linear diffusion on symmetric cryptography. An important point of this thesis is the introduction of codes with coefficients in the ring of endomorphisms of Fm2. The link between codes which are a left-submodules and additive codes have been identified. The last part focuses on the study and construction of efficient diffusion MDS matrices for the cryptographic applications, namely the circulantes matrices, dyadic matrices, and matrices with hollow representation, in ordre to minimize their implementations.
|
46 |
A METHOD FOR FINDING BETTER SPACE-TIME CODES FOR MIMO CHANNELSPanagos, Adam G., Kosbar, Kurt 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / Multiple-input multiple output (MIMO) communication systems can have dramatically higher
throughput than single-input, single-output systems. Unfortunately, it can be difficult to find the
space-time codes these systems need to achieve their potential. Previously published results
located good codes by minimizing the maximum correlation between transmitted signals. This
paper shows how this min-max method may produce sub-optimal codes. A new method which
sorts codes based on the union bound of pairwise error probabilities is presented. This new
technique can identify superior MIMO codes, providing higher system throughput without
increasing the transmitted power or bandwidth requirements.
|
47 |
BANDWIDTH EFFICIENT CONCATENATED CODES FOR EARTH OBSERVATION TELEMETRYCalzolari, Gian Paolo, Cancellieri, Giovanni, Chiaraluce, Franco, Garello, Roberto 10 1900 (has links)
International Telemetering Conference Proceedings / October 22-25, 2001 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Telemetry for Earth-Observation missions is characterized by very high data rates and stringent requirements. Channel codes both power and bandwidth efficient must be used to improve downlink performance and to achieve the very low values of error rates needed at the received side. In this paper, we review and analyzed three codes of possible interest for these applications: turbo codes, serial turbo codes and product codes. These schemes are evaluated and compared both by simulation and analytical techniques. A particular attention is devoted to complexity, a key issue for practical implementation at high data rates.
|
48 |
Improving the Left Degree Distribution of Fountain Codes in the Finite-Length RegimeHayajneh, Khaled 22 August 2013 (has links)
Fountain codes were introduced to provide higher reliability, lower complexities, and
more scalability for networks such as the Internet. In this thesis, we study Luby-
Transform (LT) codes which are the realization of Fountain codes. In the LT
codes, a sparse random factor graph is dynamically generated on both the encoder
and decoder sides of the communications channel. The graph is generated from an
ensemble degree distribution. The LT codes are also known as rateless codes, in the
sense that they can generate potentially limitless codeword symbols from original data
and self-adjust to channels with different erasure probabilities. LT Codes also have a
very low encoding and decoding complexities when comparing with some traditional
block codes, e.g., Reed Solomon (RS) codes and Low-Density-Parity-Check (LDPC)
codes. Therefore, LT Codes are suitable for many different kinds of applications such
as broadcast transmission. LT codes achieve the capacity of the Binary Erasure Channel (BEC) asymptotically and universally. For finite lengths, the search is continued to nd codes closer to the capacity limits at even lower encoding and decoding complexities. Most previous work on single-layer Fountain coding targets the design via the right degree distribution. The left degree distribution of an LT code is left as Poisson to protect the universality. For finite lengths, this is no longer an issue; thus, we focus on the design of better codes for the BEC and noisy channels as well at practical lengths.
We propose two encoding schemes for BEC and noisy channels by shaping the left
degree distribution. Our left degree shaping provides codes outperforming regular LT
code and all other competing schemes in the literature. For instance, at a bit error
rate of 10_{-7} and k = 256, our scheme provides a realized rate of 0.6 which is 23.5% higher than Sorensen et al.'s scheme over BEC. In addition, over noisy channels
our proposed scheme achieves an improvement of 14% in the released rates at k = 100
and 30 Belief Propagation (BP) iterations. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2013-08-22 19:40:59.885
|
49 |
Caractérisation analytique et optimisation de codes source-canal conjoints / Analytical Characterization and Optimization of Joint Source-Channel CodesDiallo, Amadou Tidiane 01 October 2012 (has links)
Les codes source-canal conjoints sont des codes réalisant simultanément une compression de données et une protection du train binaire généré par rapport à d’éventuelles erreurs de transmission. Ces codes sont non-linéaires, comme la plupart des codes de source. Leur intérêt potentiel est d’offrir de bonnes performances en termes de compression et de correction d’erreur pour des longueurs de codes réduites.La performance d’un code de source se mesure par la différence entre l’entropie de la source à compresser et le nombre moyen de bits nécessaire pour coder un symbole de cette source. La performance d’un code de canal se mesure par la distance minimale entre mots de codes ou entre suite de mots de codes, et plus généralement à l’aide du spectre des distances. Les codes classiques disposent d’outils pour évaluer efficacement ces critères de performance. Par ailleurs, la synthèse de bons codes de source ou de bons codes de canal est un domaine largement exploré depuis les travaux de Shannon. Par contre des outils analogues pour des codes source-canal conjoints, tant pour l’évaluation de performance que pour la synthèse de bons codes restaient à développer, même si certaines propositions ont déjà été faites dans le passé.Cette thèse s’intéresse à la famille des codes source-canal conjoints pouvant être décrits par des automates possédant un nombre fini d’états. Les codes quasi-arithmétiques correcteurs d’erreurs et les codes à longueurs variables correcteurs d’erreurs font partie de cette famille. La manière dont un automate peut être obtenu pour un code donné est rappelée.A partir d’un automate, il est possible de construire un graphe produit permettant de décrire toutes les paires de chemins divergeant d'un même état et convergeant vers un autre état. Nous avons montré que grâce à l’algorithme de Dijkstra, il est alors possible d’évaluer la distance libre d’un code conjoint avec une complexité polynomiale.Pour les codes à longueurs variables correcteurs d’erreurs, nous avons proposé des bornes supplémentaires, faciles à évaluer. Ces bornes constituent des extensions des bornes de Plotkin et de Heller aux codes à longueurs variables. Des bornes peuvent également être déduites du graphe produit associé à un code dont seule une partie des mots de codes a été spécifiée.Ces outils pour borner ou évaluer exactement la distance libre d’un code conjoint permettent de réaliser la synthèse de codes ayant des bonnes propriétés de distance pour une redondance donnée ou minimisant la redondance pour une distance libre donnée.Notre approche consiste à organiser la recherche de bons codes source-canal conjoints à l’aide d’arbres. La racine de l’arbre correspond à un code dont aucun bit n’est spécifié, les feuilles à des codes dont tous les bits sont spécifiés, et les nœuds intermédiaires à des codes partiellement spécifiés. Lors d’un déplacement de la racine vers les feuilles de l’arbre, les bornes supérieures sur la distance libre décroissent, tandis que les bornes inférieures croissent. Ceci permet d’appliquer un algorithme de type branch-and-prune pour trouver le code avec la plus grande distance libre, sans avoir à explorer tout l’arbre contenant les codes. L'approche proposée a permis la construction de codes conjoints pour les lettres de l'alphabet. Comparé à un schéma tandem équivalent (code de source suivi d'un code convolutif), les codes obtenus ont des performances comparables (taux de codage, distance libre) tout en étant moins complexes en termes de nombre d’état du décodeur.Plusieurs extensions de ces travaux sont en cours : 1) synthèse de codes à longueurs variables correcteurs d’erreurs formalisé comme un problème de programmation linéaire mixte sur les entiers ; 2) exploration à l’aide d’un algorithme de type A* de l’espace des codes de à longueurs variables correcteur d’erreurs. / Joint source-channel codes are codes simultaneously providing data compression and protection of the generated bitstream from transmission errors. These codes are non-linear, as most source codes. Their potential is to offer good performance in terms of compression and error-correction for reduced code lengths.The performance of a source code is measured by the difference between the entropy of the source to be compressed and the average number of bits needed to encode a symbol of this source. The performance of a channel code is measured by the minimum distance between codewords or sequences of codewords, and more generally with the distance spectrum. The classic codes have tools to effectively evaluate these performance criteria. Furthermore, the design of good source codes or good channel codes is a largely explored since the work of Shannon. But, similar tools for joint source-channel codes, for performances evaluation or for design good codes remained to develop, although some proposals have been made in the past.This thesis focuses on the family of joint source-channel codes that can be described by automata with a finite number of states. Error-correcting quasi-arithmetic codes and error-correcting variable-length codes are part of this family. The way to construct an automaton for a given code is recalled.From an automaton, it is possible to construct a product graph for describing all pairs of paths diverging from some state and converging to the same or another state. We have shown that, using Dijkstra's algorithm, it is possible to evaluate the free distance of a joint code with polynomial complexity. For errors-correcting variable-length codes, we proposed additional bounds that are easy to evaluate. These bounds are extensions of Plotkin and Heller bounds to variable-length codes. Bounds can also be deduced from the product graph associated to a code, in which only a part of code words is specified.These tools to accurately assess or bound the free distance of a joint code allow the design of codes with good distance properties for a given redundancy or minimizing redundancy for a given free distance. Our approach is to organize the search for good joint source-channel codes with trees. The root of the tree corresponds to a code in which no bit is specified, the leaves of codes in which all bits are specified, and the intermediate nodes to partially specified codes. When moving from the root to the leaves of the tree, the upper bound on the free distance decreases, while the lower bound grows. This allows application of an algorithm such as branch-and-prune for finding the code with the largest free distance, without having to explore the whole tree containing the codes.The proposed approach has allowed the construction of joint codes for the letters of the alphabet. Compared to an equivalent tandem scheme (source code followed by a convolutional code), the codes obtained have comparable performance (rate coding, free distance) while being less complex in terms of the number of states of the decoder. Several extensions of this work are in progress: 1) synthesis of error-correcting variable-length codes formalized as a mixed linear programming problem on integers, 2) Explore the search space of error-correcting variable-length codes using an algorithm such as A* algorithm.
|
50 |
High-Performance Decoder Architectures For Low-Density Parity-Check CodesZhang, Kai 09 January 2012 (has links)
The Low-Density Parity-Check (LDPC) codes, which were invented by Gallager back in 1960s, have attracted considerable attentions recently. Compared with other error correction codes, LDPC codes are well suited for wireless, optical, and magnetic recording systems due to their near- Shannon-limit error-correcting capacity, high intrinsic parallelism and high-throughput potentials. With these remarkable characteristics, LDPC codes have been adopted in several recent communication standards such as 802.11n (Wi-Fi), 802.16e (WiMax), 802.15.3c (WPAN), DVB-S2 and CMMB. This dissertation is devoted to exploring efficient VLSI architectures for high-performance LDPC decoders and LDPC-like detectors in sparse inter-symbol interference (ISI) channels. The performance of an LDPC decoder is mainly evaluated by area efficiency, error-correcting capability, throughput and rate flexibility. With this work we investigate tradeoffs between the four performance aspects and develop several decoder architectures to improve one or several performance aspects while maintaining acceptable values for other aspects. Firstly, we present a high-throughput decoder design for the Quasi-Cyclic (QC) LDPC codes. Two new techniques are proposed for the first time, including parallel layered decoding architecture (PLDA) and critical path splitting. Parallel layered decoding architecture enables parallel processing for all layers by establishing dedicated message passing paths among them. The decoder avoids crossbar-based large interconnect network. Critical path splitting technique is based on articulate adjustment of the starting point of each layer to maximize the time intervals between adjacent layers, such that the critical path delay can be split into pipeline stages. Furthermore, min-sum and loosely coupled algorithms are employed for area efficiency. As a case study, a rate-1/2 2304-bit irregular LDPC decoder is implemented using ASIC design in 90 nm CMOS process. The decoder can achieve an input throughput of 1.1 Gbps, that is, 3 or 4 times improvement over state-of-art LDPC decoders, while maintaining a comparable chip size of 2.9 mm^2. Secondly, we present a high-throughput decoder architecture for rate-compatible (RC) LDPC codes which supports arbitrary code rates between the rate of mother code and 1. While the original PLDA is lack of rate flexibility, the problem is solved gracefully by incorporating the puncturing scheme. Simulation results show that our selected puncturing scheme only introduces the BER performance degradation of less than 0.2dB, compared with the dedicated codes for different rates specified in the IEEE 802.16e (WiMax) standard. Subsequently, PLDA is employed for high throughput decoder design. As a case study, a RC- LDPC decoder based on the rate-1/2 WiMax LDPC code is implemented in CMOS 90 nm process. The decoder can achieve an input throughput of 975 Mbps and supports any rate between 1/2 and 1. Thirdly, we develop a low-complexity VLSI architecture and implementation for LDPC decoder used in China Multimedia Mobile Broadcasting (CMMB) systems. An area-efficient layered decoding architecture based on min-sum algorithm is incorporated in the design. A novel split-memory architecture is developed to efficiently handle the weight-2 submatrices that are rarely seen in conventional LDPC decoders. In addition, the check-node processing unit is highly optimized to minimize complexity and computing latency while facilitating a reconfigurable decoding core. Finally, we propose an LDPC-decoder-like channel detector for sparse ISI channels using belief propagation (BP). The BP-based detection computationally depends on the number of nonzero interferers only and are thus more suited for sparse ISI channels which are characterized by long delay but a small fraction of nonzero interferers. Layered decoding algorithm, which is popular in LDPC decoding, is also adopted in this paper. Simulation results show that the layered decoding doubles the convergence speed of the iterative belief propagation process. Exploring the special structure of the connections between the check nodes and the variable nodes on the factor graph, we propose an effective detector architecture for generic sparse ISI channels to facilitate the practical application of the proposed detection algorithm. The proposed architecture is also reconfigurable in order to switch flexible connections on the factor graph in the time-varying ISI channels.
|
Page generated in 0.0577 seconds