• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4677
  • 2292
  • 579
  • 544
  • 277
  • 138
  • 136
  • 103
  • 52
  • 51
  • 51
  • 48
  • 48
  • 48
  • 48
  • Tagged with
  • 10880
  • 1102
  • 1091
  • 1046
  • 975
  • 827
  • 746
  • 743
  • 733
  • 691
  • 686
  • 656
  • 642
  • 602
  • 570
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
461

Hypoxia Suppresses DNA Repair: Implications for Cancer Progression and Treatment

Chan, Norman 14 February 2011 (has links)
Acute and chronic hypoxia exists within the microenvironment of solid tumours and drives therapy resistance, genetic instability and metastasis. Despite its importance in solid tumour progression, very little is known regarding the functional consequences of hypoxia-mediated changes in the expression of DNA repair proteins. I studied the relationship between hypoxia and DNA repair using a prolonged chronic hypoxic gas treatment model in a variety of human tumour cell lines to mimic the dynamic state of proliferation and DNA repair in cells distant from the tumour blood vasculature. I observed decreased expression of homologous recombination (HR) and base excision repair (BER) proteins due to a novel mechanism involving decreased protein synthesis. Error-free HR was suppressed 3-fold under 0.2% O2 as measured by the DR-GFP reporter system and functional BER was impaired as assessed with a functional glycosylase assay. This decrease in protein expression and function resulted in increased sensitivity to the DNA damaging agents MMC, cisplatin, H2O2 and MMS. Additionally, chronically hypoxic cells were relatively radiosensitive (OER = 1.37) when compared to acutely hypoxic or anoxic cells (OER = 1.96 - 2.61). As HR defects are synthetically lethal with poly(ADP-ribose) polymerase 1 (PARP1) inhibition, I evaluated the sensitivity of repair-defective hypoxic cells to PARP inhibition. I observed increased clonogenic killing in HR-deficient hypoxic cells following inhibition or depletion of PARP1. PARP-inhibited hypoxic cells accumulated γH2AX foci consistent with an accumulation of collapsed replication forks. Additionally, tumour xenografts exposed to PARP1 inhibition showed increased γH2AX and cleaved caspase-3 expression in hypoxic subregions with suppressed RAD51 protein expression and decreased ex vivo clonogenic survival. I conclude that persistent down-regulation of DNA repair components by the microenvironment could result in faulty DNA repair with significant implications for therapeutic response and genetic instability in human cancers. Specifically, hypoxic cells may be sensitized to PARP inhibitors and other agents targeting repair pathways down-regulated by hypoxia as a consequence of microenvironment-mediated “contextual synthetic lethality”.
462

Physical mapping of mitochondrial deoxyribonucleic acid from Tetrahymena

Norton, J. D. January 1980 (has links)
No description available.
463

Mathematical models for DNA replication machinery

Hameister, Heike January 2012 (has links)
DNA replication and associated processes take place in all living organisms with the same constitutions. The knowledge of the duplication process, chromatin building and repair mechanisms has increased explosively over the last years, but the complex interplay of different proteins and their mechanisms are not conceived properly. During DNA replication, the DNA has to be unpacked, duplicated and finally repacked into chromatin. These steps require different proteins, e.g. new histone proteins on demand to secure an error-free and undelayed DNA replication. This thesis includes different mathematical models for DNA replication, repair and chromatin formation, which are based on experimental results. Three models of chromatin formation provide a simplified description of histone gene expression and protein synthesis during G1/S/G2 phase and include the contribution of different regulatory elements. Furthermore, all models present two different mechanisms of regulation to test possible scenarios of newly synthesised histones and free DNA binding sites. The basic model presents a single histone gene, which codes for a single histone protein. The stem-loop binding protein (SLBP) acts as a master regulator, which is only present during S phase. Different analyses of early S-phase, over- and underexpressed replication and the down-regulation of SLBP proof the model under extreme conditions. This basic model serves as a template for further scenarios with several genes and different histone families. For this, a second model is realised to simulate imbalances in the histone mRNA synthesis and translation. Additionally, a third model tests a gene knock-out and mRNA silencing. The initial histone model is able to qualitatively reproduce experimental observations and shows basic regulatory principles. The adaptation with several genes and different histone families presents qualitatively different system responses for the discussed regulatory mechanisms and illustrates the ability to compensate the effect of mRNA silencing.
464

X-ray diffraction and molecular modelbuilding studies on the deoxyribonucleic acid double helix

Greenall, Robert James January 1982 (has links)
No description available.
465

Core histone acetylation of active genes

Clayton, Alison Louise January 1995 (has links)
No description available.
466

Characterisation of proteins that stimulate the DNA ligase IV/Xrcc4 complex

Stiff, Thomas January 2001 (has links)
No description available.
467

Contrôle épigénétique du risque de montaison chez une plante de grande culture : la betterave sucrière : mise au point d'une stratégie de caractérisation d'épiallèles associés à la sensibilité à la montaison en vue de l'élaboration d'un test de sélection / Epigenetic control of the bolting risk in a crop plant : sugar-beet : the development of a strategy to characterize epialleles associated with bolting sensivity, with a view to implementation as a selection tool

Gentil, Marie-Véronique 27 January 2009 (has links)
Chez les plantes, les processus de développement global et de plasticité développementale sont contrôlés par des mécanismes épigénétiques. La méthylation de l’ADN peut présenter un polymorphisme (épiallèles) qui est une source possible de biomarqueurs pour la sélection de génotypes d’intérêt agronomique. Pourtant, la recherche de tels biomarqueurs n’a pas encore été initiée. Dans ce contexte, nos objectifs ont concerné l'élaboration d'une stratégie pour la mise en évidence d’un contrôle épigénétique lors d’un processus développemental chez la betterave sucrière (Beta vulgaris altissima), ainsi que la recherche des biomarqueurs épigénétiques associés. Cette stratégie a d’abord été appliquée à la morphogenèse in vitro, sur trois lignées cellulaires de betterave sucrière. Une relation a pu être établie entre le niveau de méthylation de l’ADN et les propriétés morphogénétiques des lignées. Des biomarqueurs de morphogenèse in vitro ont ainsi été identifiés. La même stratégie a ensuite été appliquée in planta à la même espèce. L'existence d'un contrôle épigénétique lors de la vernalisation et de la dévernalisation chez plusieurs hybrides de betterave sucrière, avec des sensibilités à la montaison différentes, a été démontrée. Nous suggérons que l’amplitude et la cinétique des variations épigénétiques contrôlent l’induction de la montaison et sa rapidité, confirmant ainsi le rôle de la méthylation de l’ADN dans ce processus. Les loci cibles de ces remaniements de la méthylation de l'ADN lors de la vernalisation ont été définis. Un criblage a enfin permis d’identifier de potentiels biomarqueurs épigénétiques de la sensibilité à la montaison en vue de la mise au point d’un futur test de sélection agronomique. / In plants, the processes of global development and of developmental plasticity are controlled by epigenetic mechanisms. Polymorphism in DNA methylation (leading to epialleles) is a possible source of biomarkers for the selection of genotypes of agronomic interest. Until now, however, the search for such biomarkers has not been undertaken. Against this background, our objectives were to develop a strategy to investigate the existence of epigenetic control during a developmental process in sugar-beet (Beta vulgaris altissima) and to search for associated epigenetic biomarkers. The strategy was first applied to three sugar-beet cell lines, where we were able to established a relationship between the level of DNA methylation and the morphogenetic statue of the lines, and thus to identified a number of biomarkers for in vitro morphogenesis. We then applied the same strategy in planta in the same species and demonstrated the existence of epigenetic control (DNA methylation) during vernalization and devernalization in several sugar-beet hybrids that differed for bolting susceptibility. We propose that the scale and kinetics of epigenetic modifications control the induction and the rapidity of bolting, confirming the role of DNA methylation in this process. We have identified a number of target loci for these changes in DNA methylation during vernalization, and by screening these have been able to select several potential epigenetic biomarkers for bolting susceptibility, which may prove useful in future beet improvement programmes.
468

Epigenetic imprinting and breast cancer : a study of DNA methylation and genotype

Harrison, Kristina January 2015 (has links)
Breast cancer is the most common type of female cancer in the UK and the second most common cause of cancer death. Many factors, including genetic and environmental influences, contribute to an individual's lifetime risk. The role of epigenetics, particularly DNA methylation, has been considered as a mechanism that could link these risks and provide a non-genetic explanation of cancer heritability. Loss of imprinting is a hallmark of many cancers and has been observed in non-tumour tissue of affected and at risk individuals. Many imprinted genes maintain their allele specific methylation in a wide range of adult somatic tissues, remaining stable throughout life. Repeat elements are also of interest as they have been implicated in imprint maintenance. The main hypothesis of this study was that altered DNA methylation at imprinted gene regions would be observed in blood samples of breast cancer patients, when compared to a matched disease-free population. Methylation levels of imprinted gene regions and repeat elements were examined for breast cancer risk and associated clinical and pathological characteristics, within a case-control cohort. Genotypes within the 11p15 imprint cluster (a region which presents loss of imprinting in cancer) were examined and interactions with epigenotype considered. DNA methylation changes were observed in non-tumour tissue in women with breast cancer at imprinted genes PEG3, INPP5F, KCNQ1OT1, KvDMR, L3MBTL and PLAGL1/ZAC1. Methylation changes were identified which have the potential to differentiate between patients who may or may not progress onto invasive breast cancer. Pathological characteristics of breast cancer were also linked to DNA methylation changes which could enhance our knowledge of tumour heterogeneity. Genotype-epigenotype interactions were observed within the 11p15 region and two genetic variants were associated with breast cancer risk. Results reported here enhance our current knowledge of methylation changes in blood of breast cancer patients and could contribute to the development of screening approaches and personalised treatments.
469

Molecular motion and templated chemistry coordinated by DNA nanomachines

Muscat, Richard A. January 2011 (has links)
This thesis investigates ways in which a nanoscale production line may be built from synthetic DNA components. One property of a production line is motion, the coordinated movement of components, in this case strands of DNA, between specific locations. Another property is the ability to assemble a product, where smaller molecular building blocks are attached to D A and react when brought together by the DNA assembly line. An important fea- ture of either task is the ability of the mechanism to proceed with minimum user interaction: it is preferable that the assembly line be autonomous. The challenges and design principles of molecular machines working in nano- scale environments are first considered. Previous studies demonstrating the use of synthetic DNA not only as a self-assembling material to build nano- structures, but also to coordinate motion, are summarized. All DNA nano- machines that operate through the exchange of DNA strands are coordinated by toeholds. A 'split toehold', one that combines two smaller toeholds on distal sections of DNA held in proximity, is proposed as a way to allow a single cargo strand to interact with many different components. A molecular motor is then developed that transports a cargo between track locations. The fuel strands are hairpins, that carry instructions directing the cargo to the next anchorage. The switching of cargo direction in response to the chemical environment is also investigated. Two mechanisms that may allow the autonomous assembly of components are investigated, one of which is demonstrated using DNA-linked cleavable molecular building blocks. Further extensions to the mechanism are investi- gated, for example, the ability to use the DNA mechanism itself as a barcode containing information on the order of assembled ingredients.
470

DNA origami : a substrate for the study of molecular motors

Wickham, Shelley January 2011 (has links)
DNA origami is a method for constructing 2-dimensional nanostructures with arbitrary shapes, by folding a long piece of viral genomic DNA into an extended pattern (Rothemund, 2006). In this thesis DNA origami nanostructures that in- corporate active transport are developed, by combining rectangular DNA origami tiles with either synthetic DNA motors, or the protein motor F1-ATPase. The transport of an autonomous, unidirectional, and processive 'burnt-bridges' DNA motor across an extended linear track anchored to a DNA origami tile is demonstrated. Ensemble fluorescence measurements are used to characterise motor transport, and are compared to a simple deterministic model of stepping. The motor moves 100 nm along a track at 0.1 nms-1 Atomic force microscopy (AFM) is used to study the transport of individual motor molecules along the track with single-step resolution. A DNA origami track for a 'two-foot' DNA motor is also developed, and is characterised by AFM and ensemble fluorescence measurements. The burnt-bridges DNA motor is then directed through a track network with either 1 or 3 bifurcations. Ensemble fluorescence measurements demonstrate that the path taken can be controlled by the addition of external control strands, or pre-programmed into the motor. A method for attaching the rotary motor protein F1-ATPase to DNA origami tiles is developed. Different bulk and single-molecule methods for demonstrat- ing protein binding are explored. Single-molecule observations of rotation of the protein motor on a DNA origami substrate are made, and are of equivalent data quality to existing techniques.

Page generated in 0.0291 seconds