Spelling suggestions: "subject:"eliquid"" "subject:"emdliquid""
401 |
Defects in liquid crystals : mathematical and experimental studiesLewis, Alexander January 2015 (has links)
Nematic liquid crystals are mesogenic materials that are popular working materials for optical displays. There has been an increased interest in bistable liquid crystal devices which support two optically distinct stable equilibria. These devices typically exploit a complex geometry or anchoring conditions, which often induces defects in the equilibria. There remains a great deal to be understood about the structure of the defects and how they stabilize multiple equilibria in modern devices. This thesis focuses on four problems: the first three explore the effect of confinement and defects on nematic equilibria in simple geometries, with the aim of exploring multistability in these geometries; the fourth problem concerns the fine structure of point defects, essential for future modelling of nematic equilibria in more complex geometries. Firstly, we study nematic liquid crystals confined to two-dimensional rectangular wells using the Oseen-Frank theory. Secondly, we study equilibria within a semi-infinite rectangular domain with weak tangential anchoring on the surfaces. Thirdly, we study nematic equilibria within two-dimensional annuli. We derive explicit expressions for the director fields and free energies of equilibria within these geometries and discuss the stability of the predicted states. These three problems are motivated by the experimental work on colloidal nematic liquid crystals, which we interpret in the context of our results. Finally, we study the fine structure and stability of the radial hedgehog defect in the Landau-de Gennes theory with a sixth order bulk potential, relevant to the observability of global biaxial phases in a model with higher order potential terms.
|
402 |
Use of 1-ethyl-3-methylimidazolium ethyl sulfate for liquid-liquid equilibria for ternary mixturesMohale, Tshepang January 2017 (has links)
Submitted in fulfilment of the academic requirements of Masters in Applied Sciences (Chemistry), Durban University of Technology, 2017. / This thesis forms part of the Durban University of Technology Thermodynamics Research Unit’s project which is aimed at developing a method for determination of the liquid-liquid equilibria (LLE) data for the azeotrope {methanol + water} with an ionic-liquid (IL) using DSA5000M to assess the efficiency of the ionic liquid to be used in liquid-liquid extractions for the recovery and recycling of methanol from petroleum refinery.
The objective of this study was to determine the liquid-liquid equilibria data of the azeotrope {methanol + water} using 1-ethyl-3-methylimidazolium ethyl sulfate ionic liquid with the intention to recycle methanol from the Fischer-Tropsch (FT) process by- products in petroleum industries and to utilize it in gasoline additives in a new methanol to gasoline (MTG) petroleum process.
LLE studies of systems containing alcohols and water are important due to the increasing demands of oxygenated compounds to produce lead free gasoline.
Light alkanols such as methanol and ethanol are reported to be suitable compounds in order to produce lead free gasoline, but the use of methanol in gasoline blends can cause phase separation problems in:
1. dry conditions, these are due to its partial solubility in saturated hydrocarbons.
2. the presence of water from ambient humidity or in storage tanks, this depend on unfavourable distribution factor between aqueous and the hydrocarbon phase.
To determine the possibility of separating methanol from water using ionic liquid, the liquid-liquid equilibria data was determined at room temperature, T = 298.15 K and atmospheric pressure to investigate whether it separate from water and/or a non-phase separation if it is used as an additive.
The experimental data generated was compared to that of the literature for the system
{methanol (1) +toluene (2) + dodecane (3)} and showed good agreement with the literature data with only maximum deviation of ± 0.0015 in the mole fraction using density calculations and ± 0.0092 in the mole fraction when using refractive index calculations The selectivities and distribution coefficients for this system were also calculated and the maximum deviation between the two methods (nD and ρ) was ± 1.33 in selectivities and found to be ±0.001 for distribution coefficients. The maximum deviation in distribution coefficients from literature when using nD calculations for system 1 was ±0.04 and ±0.01 for ρ. For the selectivity values the deviation from that of literature of nD when compared was found to be ± 1.28 and 0.29 for ρ respectively.
The selectivity values from the density calculations were found to be in the range 2.82 –
7.66 for this system with the distribution coefficient values reported in the range 0.17 – 0.23.
In the second system (system 2) the generated experimental data was also compared to that of the literature for the system {water (1) + methanol (2) + cyclohexane (3)} and in good agreement with literature values with only maximum deviation of ± 0.0091 in the weight fraction based on density calculations. The selectivities and distribution coefficients were also calculated and the maximum deviation between the literature and the experimental data was computed to be at ± 0.0003 for selectivity and ±0.09 in distribution coefficient.
The selectivity values were found to be in a range 0.00 - 0.04 for this system and were constant throughout the phases but significantly less than one; with the distribution coefficient values in the range 0.00 – 0.008.
For 1-ethyl-3-methylimidazolium ethyl sulfate system (Ionic liquid system) the selectivity values were not constant throughout the two-phase region and the values were found to be in the range 0.63 -0.99 still below one which indicates that the ionic liquid used in this study could not be considered as a potential solvent for the separation of the investigated azeotrope.
The distribution coefficients for this system were determined and found to be in the range 0.23 – 0.74.
The certainty and reliability of experimentally measured tie-line data was ascertained by applying Othmer-Tobias (OT) correlations and the Non-Random, Two Liquid (NRTL) parameters.
The OT correlations for system 1 was linear and indicated the certainty of the five tie-lines prepared for this system.
In system 2 the OT correlation was not linear and indicated extensively high errors as well as high systematic multiplicative and additive errors in calculations of mole fractions.
For the IL system the OT correlation was linear throughout the whole tie-line range and indicated the adequate precision, which denotes that the investigation was carried out with minimal random and systematic errors and indicated the efficiency of the DSA 5000 M to generate the liquid-liquid equilibria data.
All the ternary systems were well correlated and in good agreement with the estimated NRTL data.
It was only system 1{methanol (1) + toluene (2) + dodecane (3)} that gave a high maximum deviation ( %RSMD) of 1.288 when using the RI measurements with the minimum error margin of 0.6320, this account as to why RI measurements were not applied in other systems (system 2 and ionic liquid system).
Similarly for the same system; system 1{methanol (1) + toluene (2) + dodecane (3)} when using the density measurements; the NRTL model gave a maximum deviation of 0.5620 and minimum error margin of 0.2590.
The NRTL obtained for system 2 {water (1) + methanol (2) + cyclohexane (3)} gave the maximum deviation of 0.5752 and minimum error margin of 0.0127.
The NRTL for the ionic liquid ternary system {[EMIM][EtSO4](1) + methanol (2) + water (3)}showed a good agreement between the experimental data and the NRTL model tie- line data with the %RSMD of 1.0201 on the upper limit and 0.1620 as a lower deviation. / M
|
403 |
The application of quantitative structure activity relationship models to the method development of countercurrent chromatographyMarsden-Jones, Siân Catherine January 2016 (has links)
A fundamental challenge for liquid-liquid separation techniques such as countercurrent chromatography (CCC)and centrifugal partition chromatography (CPC), is the swift, efficient selection of the two phase solvent system containing more than two solvents, for the purification of pharmaceuticals and other molecules. A purely computational model that could predict the optimal solvent systems for separation using just molecular structure would be ideal for this task. The experimental value being predicted is the partition coefficient (Kd), which is the concentration of the compound in one phase divided by the concentration in the other. Using this approach, Quantitative Structure Activity Relationship (QSAR) models have been developed to predict the partitioning of compounds in two phase systems from the molecular structure of the compound using molecular descriptors. A Kd value in the range of 0.5 to 2 will give optimal separation. Molecular descriptors are varied, examples include logP values, hydrogen bond donor values and the number of oxygen atoms. This work describes how the QSAR models were developed and tested. A dataset of experimental logKd values for 54 compounds in six different combinations of four solvents (heptane, ethyl acetate, methanol and water) was used to train the QSAR models. A set of 196 possible molecular descriptors was generated for the 54 compounds and a partial least squares regression was used to identify which of these was significant in the relationship between logKd and molecular structure. The resulting models were used to predict the logKd values of four test compounds that had not been used to build the QSAR models. When these predictions were compared to the experimental logKd values, the root mean squared error for four of the six models was less than 0.5 and less than 0.7 for the remaining two. These models were used to successfully separate a range of structurally diverse pharmaceutical compounds by predicting the best solvent systems to carry out the separation on the CCC/CPC using nothing but their molecular structure.
|
404 |
A study of petrol and diesel fuel blends with special reference to their thermodynamic propeties and phase equilibriaHayward, Caroline January 1986 (has links)
The ternary phase behaviour of the n-heptane-l-propanol-water system was studied and compared with the theoretical prediction based on the UNIQUAC model for non-electrolyte solutions. The results showed that this model adequately approximated experimental studies. The excess enthalpies and excess volumes for several binary mixtures were determined. The excess enthalpies were measured using a LKB flow microcalorimeter and the excess -volumes determined using a PAAR densitometer. The study showed that no significant enthalpy or volume changes occurred when petrol/n-heptane were mixed with alcohols . Ternary phase diagrams, including tie lines have been determined for a number of petrol-alcohol-water systems (including the Sasol blend of alcohols). The tie line results show that the concentration of water in the water-rich layer is strongly dependent on the type of alcohol used. The Sasol alcohol blended with petrol resulted in a high water concentration in the water-rich layer which forms on phase separation. This is believed to contribute significantly to the corrosion problems experienced by motorists using the Sasol blended fuel on the Witwatersrand. The effect of temperature on several of these blends was included in the study. Diesel-alcohol blends and the co-solvent properties of ethyl acetate investigated. Ethyl acetate ensures miscibility at low concentrations for diesel-ethanol blends. Octyl nitrate and two cetane improvers from AECI were assessed in terms of their ability to restore cetane rating of blended diesel fuel to that of pure diesel fuel. The results indicated that all three samples were successful in this application. / KMBT_363
|
405 |
Analytical procedures for the determination of wattle polyphenols in wastewatersHendry, Antony John January 1984 (has links)
No description available.
|
406 |
Dispersion, assembly and electrochemistry of graphene at the liquid-liquid interfaceRodgers, Andrew Norman John January 2015 (has links)
The dispersion of graphene in 1,2-dichloroethane (DCE), its subsequent attachment at the water-DCE interface and the reduction of oxygen at the water-DCE interface proceeding via interfacial graphene have been investigated. Using addition of an electrolyte which screens surface charge, it was found that electrostatic repulsions play a significant role in determining the kinetic stability of lyophobic non-aqueous graphene dispersions. The onset of aggregation was determined and it was found that dispersions prepared from higher-oxygen content graphite were more stable than those prepared from lower-oxygen content graphite, indicating that oxygen content is important in determining the surface charge on graphene in non-aqueous dispersion. The presence of organic electrolyte was also found to promote assembly of graphene into a coherent film at the liquid-liquid interface. Measurement of the liquid-liquid interfacial tension and three-phase contact angle revealed that the energetics of particle attachment did not change in the presence of organic electrolyte, thus indicating a mechanism of inter-particle electrostatic repulsion minimisation through surface charge screening. Interfacial graphene was found to display a catalytic effect toward the oxygen reduction reaction at the water-DCE interface. A bipolar cell was developed which showed that this reaction occurs heterogeneously, with graphene acting as a conduit for electrons across the water-DCE interface.
|
407 |
Development of a high-performance liquid chromatographic assay for human chorionic gonadotropin as an alternative to the official United States pharmacopeial animal assayEmbree, Leanne January 1985 (has links)
Human chorionic gonadotropin (HCG), a glycoprotein hormone with two nonidentical subunits, is produced by chorionic tissue in pregnant women and by neoplastic tissue containing chorionic elements. It is used in the treatment of male hypogonadism and female sub-fertility.
Quantitation of HCG is used to monitor therapy, diagnose various disease states and diagnose and monitor pregnancy. Low levels of HCG in the early and late stages of pregnancy and in various disease states has prompted the development of extremely sensitive assay procedures. Clinically, radioimmunoassay methods are most frequently used due to their precision, sensitivity and cost. However, problems with specificity have been noted.
Commercial preparations of HCG must meet the standards outlined in the United States Pharmacopeia (USP). The assay procedure involves a rat uterine weight bioassay. This protocol is lengthy to perform (5 days), requires the sacrifice of a large number of animals (minimum of 60 female rats per assay) and may need to be repeated if the results do not meet the statistical requirements of the assay. Due to the use of animals and the animal care facilities required, this is an expensive assay. In addition, the bioassay is not specific for HCG. Therefore, this thesis reports the analysis of two commercial preparations of HCG, as well as USP Reference Standard HCG and commercially available purified intact HCG and purified individual subunits. Various HPLC assay procedures were evaluated to determine if HPLC would be a viable alternative to the official USP bioassay.
Size exclusion HPLC, using one Protein Pak 125 sw column and two Protein Pak 300 sw columns individually and in various combinations, was used to assess all the samples of HCG. Attempts to increase resolution of HCG from interfering components found in these preparations included using both 208 nm and 278 nm for ultraviolet detection, evaluation of 32 buffers as mobile phases with the Protein Pak 300 sw column, fluorescamine derivatization of HCG followed by fluorescence detection, connection of two size exclusion columns in series, and recycling on a Protein Pak 300 sw column. Further attempts to isolate HCG from its protein contaminants involved using ion exchange HPLC with a Protein Pak DEAE 5 pw column with 20 different buffers as mobile phases as well as reversed-phase HPLC with an Ultrasphere ODS column. The greatest resolution was obtained with one Protein Pak 300 sw column with a phosphate buffer (0.15 M, pH 7.0) for the mobile phase and ultraviolet detection.
Latex agglutination inhibition slide tests and electrophoresis techniques were used to evaluate commercial samples of HCG and chromatographic peak eluates.
Commercial HCG samples appear to contain the individual subunits of HCG and intact HCG along with impurities. The USP Reference Standard HCG contains intact HCG but also contains other ultraviolet absorbing components that were partially separated by HPLC. Electrophoresis also indicated that this HCG sample contained impurities. In addition, the purified intact HCG and purified subunit samples contained impurities, as shown by HPLC.
The size exclusion HPLC assay developed using one Protein Pak 300 sw column was unable to resolve intact HCG from the beta-subunit. This assay would be useful for a qualitative assay for purity of HCG preparations. However, at present, HPLC is not a viable alternative to the USP bioassay. / Pharmaceutical Sciences, Faculty of / Graduate
|
408 |
Objective judgement of cheese varieties by multivariate analysis of HPLC profilesSmith, Anita Mohler January 1987 (has links)
An objective analytical method was developed to characterize the taste profiles of five cheese varieties. Nonvolatile water extracts of Cheddar, Edam, Gouda, Swiss, and Parmesan cheeses were analyzed by high performance liquid chromatography (HPLC) with a reversed phase column. The HPLC operating conditions were determined with Mapping Super-Simplex followed by Centroid Mapping Optimization. A ternary gradient elution system was used with an Adsorbosphere C8 column to resolve a maximum number of components. The optimum solvent volume ratio was 96.8 : 1.2 : 2.0 for trifluoroacetic acid (0.1%), acetonitrile, and methanol, with a flow rate of 1.0 mL/min. Over 50.3 min this ratio was changed to 56.3 : 30.3 : 13.4.
Multivariate statistical analyses including principal component and discriminant analyses were applied to 55 peak areas from 106 cheese chromatograms. Principal component analysis reduced the dimensionality of the "data from 55 to 17 principal components, which are-combinations of the original variables, with a 26% loss of explained sample variation. Discriminant analysis on data from a single HPLC column was able to correctly classify cheeses by variety at a greater than 90% success rate. This grouping rate dropped to 64% when data from all four HPLC columns was combined, implicating large between column variations. A semi-trained sensory panel correctly classified cheeses by variety at a 63% rate. This objective method provides a lasting fingerprint of cheese products. / Land and Food Systems, Faculty of / Graduate
|
409 |
Effect of the Boundary Conditions Applied to the Liquid Bridge on the Liquid Transfer between Two Solid SurfacesTourtit, Youness 22 April 2021 (has links) (PDF)
The trend towards miniaturization requires to handle even smaller micro-components: they must be picked, placed with high accuracy, and then released. This highly challenging process should take into account two aspects: the yield of successful placements and the minimized risk of damaging the manipulated micrometer-sized objects due to contact forces. Despite the advantages of the latest gripping technologies, including low complexity, high accuracy, and high reliability, the component is subjected to high contact forces that could damage it. As a consequence, there is a need of developing new and innovative ways to manipulate micro-sized components with respect to the requirements mentioned above. Gripping based on capillary bridges is a promising technique to handle components at the micrometric scale. This technique offers many advantages: flexibility and reliability, self-centering effect, the capability of grasping small and delicate components in a wide range of shapes and materials thanks to the “bumper” effect of the mediated liquid bridge. Nevertheless, the liquid residue on the component after breaking up the bridge is undesirable. As a consequence, there is a need to design a capillary gripping system that can retain all the liquid after the breakup of the bridge. Understanding the formation, the stretching, and the liquid distribution after the breakup of the liquid bridge is mandatory. In this thesis and in the first place, we studied the rupture of a liquid bridge confined between different geometries of the gripper and the substrate: plane/plane, cone/plane, and cavity/plane. We developed, based on the resolution of the Young-Laplace equation, an operational quasi-static criterion to predict the rupture gap of the bridge. We also investigated the effect of the geometry on the liquid distribution after the breakup. Optimal geometries are found to retain up to 90$%$ of the liquid after the breakup of the bridge. In the second place, we investigated the secretion dispensing in green dock beetles ( extit{Gastrophysa viridula}). Their ability to walk upside-down on any kind of surfaces rely on mediated secretion between their hairy pad and the surface they walk on. We studied the mechanism of the secretion dispensing from the source where it is produced to the contact zone. Experimental setups have been designed, with advancing 3D printing and micro-fabrication techniques. Models have been developed, discussed, and compared to experimental data. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
|
410 |
Computational modelling of nematic liquid crystal defects in devices and fiber processingDe Luca, Gino January 2007 (has links)
No description available.
|
Page generated in 0.0407 seconds