• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • 1
  • Tagged with
  • 47
  • 47
  • 34
  • 30
  • 24
  • 22
  • 19
  • 14
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Emission line stars in and beyond the Perseus Arm

Raddi, Roberto January 2013 (has links)
I present low-resolution (Dl 6 A° ) follow-up spectroscopy of 370 Ha emitters (12 . r . 17) identified with IPHAS, in a 100 deg2 wide section of the Galactic plane that is located between ` = (120 ; 140 ) and b = ( 1 ; +4 ). Classical Be stars are found to be the most numerous group of the observed targets ( 60%). Sixty-eight classical Be stars have also been observed at higher spectral resolution (Dl 2 4 A° ) and S/N ratio, which allows spectral typing to an estimated precision of 1 sub-type. Colour excesses were measured via spectral energy distribution fitting of flux-calibrated data. I took care to remove the circumstellar contribution to the measured colour excess, using an established scaling to the Ha equivalent widths. In doing so, this method of correction was re-evaluated and modified to better suit the data at hand. Spectroscopic parallaxes were measured constraining the luminosity class via estimates of distances to main sequence A/F stars, which are found within a few arcminutes of each classical Be star on the sky. In order to probe the structure of the outer Galactic disc, I studied the spatial distribution of 63 out of 248 classical Be stars identified. Their cumulative distribution function with respect to the distance is statistically compatible both with a smooth exponential density profile and with a simple spiral arms representation. The distribution of reddenings of classical Be stars is compared with estimates of the total Galactic reddening along their sightlines. It is expected that the measured reddenings match the integrated Galactic values, for distant stars located outside the Galactic dust layer, or they are smaller than the asymptotic values if the stars are less distant. The outcome meets expectations, and lends support to the conclusion that the measured reddenings are determined to a precision of 10%. The sample of 248 objects doubles the number of known classical Be stars in this part of the Galactic plane. Unlike the pre-existing bright sample, the new objects are seen at large distances, between 2 – 8 kpc with typical E(B V) 0:9. Only four stars are members of known clusters. Ten classical Be stars are proposed to be well beyond the putative Outer Arm, at distances larger than 8 kpc. The large sample of stars, which has been identified here, is the result of a successful selection and analysis of classical Be stars that is offered for more exploitation in future. The proposition is that GAIA observations will use the present sample of classical Be stars as a new tracer of the Galactic disc.
12

IRAS Observations of the Rho Ophiuchi Infrared Cluster: Spectral Energy Distributions and Luminosity Function

Wilking, B. A., Lada, C. J., Young, E. R. 12 1900 (has links)
No description available.
13

The MiMeS Survey of Magnetism in Massive Stars: Introduction and Overview

Wade, G. A., Neiner, C., Alecian, E., Grunhunt, H. H., Petit, V., Batz, B., Bohlender, D. A., Cohen, D. H., Henrichs, H. F., Kochukhov, O., Landstreet, J. D., Manset, N., Martins, F., Mathis, S., Oksala, M. E., Owocki, S. P., Rivinius, Th., Schultz, M. E., Sundqvist, J. O., Townsend, R. H.D., Doula, A., Bouret, J. C., Braithwaite, J., Briquet, M., Carciofi, A. C., David-Uraz, A., Folsom, C. P., Fullerton, A. W., Leroy, B., Marcolino, W. L.F., Moffat, A. F.J., Naze, Y., St Louis, N., Auriere, M., Bagnulo, S., Bailey, J. D., Barba, R. H., Blazere, A., Bohm, T., Catala, C., Donati, J-F, Ferrario, L., Harrington, D., Howarth, I. D., Ignace, Richard, Kaper, L., Luftinger, T., Prinja, R., Vink, J. S., Weiss, W. W., Yakunin, I. 11 December 2015 (has links)
The MiMeS (Magnetism in Massive Stars) project is a large-scale, high-resolution, sensitive spectropolarimetric investigation of the magnetic properties of O- and early B-type stars. Initiated in 2008 and completed in 2013, the project was supported by three Large Program allocations, as well as various programmes initiated by independent principal investigators, and archival resources. Ultimately, over 4800 circularly polarized spectra of 560 O and B stars were collected with the instruments ESPaDOnS (Echelle SpectroPolarimetric Device for the Observation of Stars) at the Canada–France–Hawaii Telescope, Narval at the Télescope Bernard Lyot and HARPSpol at the European Southern Observatory La Silla 3.6 m telescope, making MiMeS by far the largest systematic investigation of massive star magnetism ever undertaken. In this paper, the first in a series reporting the general results of the survey, we introduce the scientific motivation and goals, describe the sample of targets, review the instrumentation and observational techniques used, explain the exposure time calculation designed to provide sensitivity to surface dipole fields above approximately 100 G, discuss the polarimetric performance, stability and uncertainty of the instrumentation, and summarize the previous and forthcoming publications.
14

Formation & Evolution of early-types galaxies : Numerical simulations of galaxy mergers

Bois, Maxime 23 February 2011 (has links) (PDF)
A simple morphological classification of the galaxies in the local Universe shows two main families: (1) the disc galaxies, with spiral arms and in two-thirds of these galaxies a stellar bar; and (2) the elliptical and lenticular galaxies, labelled early-type galaxies (ETGs), which are dominated by a spheroidal stellar component. ETGs are among the most massive galaxies of the local Universe and present a red color, meaning that their stars are old. These galaxies also present a large diversity of stellar dynamics: they may have a regular rotation pattern aligned with the photometry or perpendicular to it; they can present no global rotation at all; or may hold a central stellar component with a rotation axis distinct from the outer stellar body called a Kinematically Distinct Core (KDC). These features observed in the dynamics of the ETGs and their large mass are clearly signs of past interactions, especially signs of galaxy mergers. The main goal of my thesis is to analyse a large sample of high-resolution numerical simulations of binary galaxy mergers. These binary mergers are called "idealized" because they do not take into account the full cosmological context of galaxy formation: two isolated spiral galaxies are launched in an orbit resulting in a merger of the galaxies, the final remnant is an ETG. The statistical analysis of this large sample of simulations enables us to link the initial conditions of the merger to the final merger remnant. I demonstrated that the mass ratio between the spiral progenitors and the orientation of their spins of angular momentum are the main drivers for the formation of fast and slow rotating ETGs and the KDCs. The morphology of the initial spiral (Bulge/Disc ratio) seems also to play a major role for the formation of the different types of ETGs but its impact is not completelly clear, and other simulations are planned to clarify this problem. During my thesis, I also studied the importance of the resolution in the numerical simulations of galaxy mergers. I showed that the number of particles and the size of the computational grid have a predominant role in the final product of the merger. A too low resolution (i.e. too few particles and a coarse grid) can not follow the rapid evolution of the gravitational potential during the merger. In this case, the angular momentum is not as efficiently transfered to the outer parts of the galaxy: the merger remnant keeps thus a strong and regular rotation. At higher resolution, the scattering of the orbit is resolved and the merger remnant may end-up with, under some special initial conditions, a slow rotation and may form a KDC.
15

Formation & Evolution of early-types galaxies : Numerical simulations of galaxy mergers / Formation et évolution des galaxies précoces : simulations numériques de fusion de galaxies

Bois, Maxime 23 February 2011 (has links)
Une simple classification morphologique des galaxies de l'Univers local montre deux grandes familles: (1) les galaxies disques, avec des bras spiraux et dans deux-tiers des cas une barre stellaire; et (2) les galaxies elliptiques et lenticulaires, dites galaxies de type précoce ou early-type galaxies (ETGs), qui sont dominées par une composante stellaire sphéroidale. Les galaxies les plus massives de l'Univers local sont les ETGs. Ces galaxies présentent aussi une large variété de dynamique stellaire: elles peuvent avoir un champ de vitesse régulier et aligné avec la photométrie ou perpendiculaire à la photométrie; ne présenter aucune rotation globale; ou alors être composées de deux disques en contre-rotation l'un par rapport à l'autre (Kinematically Distinct Core ou KDC). Ces signatures dans la dynamique stellaire des ETGs et leur importante masse sont des signes d'interactions passées, en particulier des signes de fusions de galaxies. Le but principal de ma thèse est d'analyser un large échantillon de simulations numériques à haute résolution de fusions binaires de galaxies. Ces fusions sont dites "idéalisées" car elles ne prennent pas en compte le contexte cosmologique de formation des galaxies : deux galaxies en isolation sont lancées sur une orbite permettant la fusion de ces galaxies, le résultat final attendu de la fusion étant une ETG. L'analyse statistique de ce large échantillon de simulations nous permet de relier les conditions initiales de la fusion à la galaxie finale. J'ai démontré que le rapport de masse entre les spirales initiales et que l'orientation de leurs moments angulaires sont des points essentiels à la formation des ETGs avec peu ou beaucoup de rotation et des KDCs. La morphologie de la spirale (rapport Bulbe/Disque) est aussi un point important pour la formation des KDC mais son impact n'est pas clair et de nouvelles simulations sont nécessaires pour conclure. Durant ma thèse, j'ai aussi étudié l'importance de la résolution dans les simulations numériques de fusion de galaxies. J'ai montré que le nombre de particules et la taille des cellules utilisées ont une importance prépondérante dans les résultats finaux. Une trop faible résolution (i.e. peu de particules et une grille grossière) ne permet pas de suivre l'évolution rapide du potentiel gravitationnel lors de la fusion. Dans ce cas, certaines particules n'évacuent pas leur moment angulaire vers l'extérieur de la galaxie: la galaxie résultante de la fusion garde ainsi une plus forte rotation. A haute résolution, la dispersion de ces orbites est résolue, la galaxie résultante possède donc une faible rotation et peut former, sous certaines conditions initiales, un KDC. / A simple morphological classification of the galaxies in the local Universe shows two main families: (1) the disc galaxies, with spiral arms and in two-thirds of these galaxies a stellar bar; and (2) the elliptical and lenticular galaxies, labelled early-type galaxies (ETGs), which are dominated by a spheroidal stellar component. ETGs are among the most massive galaxies of the local Universe and present a red color, meaning that their stars are old. These galaxies also present a large diversity of stellar dynamics: they may have a regular rotation pattern aligned with the photometry or perpendicular to it; they can present no global rotation at all; or may hold a central stellar component with a rotation axis distinct from the outer stellar body called a Kinematically Distinct Core (KDC). These features observed in the dynamics of the ETGs and their large mass are clearly signs of past interactions, especially signs of galaxy mergers. The main goal of my thesis is to analyse a large sample of high-resolution numerical simulations of binary galaxy mergers. These binary mergers are called "idealized" because they do not take into account the full cosmological context of galaxy formation: two isolated spiral galaxies are launched in an orbit resulting in a merger of the galaxies, the final remnant is an ETG. The statistical analysis of this large sample of simulations enables us to link the initial conditions of the merger to the final merger remnant. I demonstrated that the mass ratio between the spiral progenitors and the orientation of their spins of angular momentum are the main drivers for the formation of fast and slow rotating ETGs and the KDCs. The morphology of the initial spiral (Bulge/Disc ratio) seems also to play a major role for the formation of the different types of ETGs but its impact is not completelly clear, and other simulations are planned to clarify this problem. During my thesis, I also studied the importance of the resolution in the numerical simulations of galaxy mergers. I showed that the number of particles and the size of the computational grid have a predominant role in the final product of the merger. A too low resolution (i.e. too few particles and a coarse grid) can not follow the rapid evolution of the gravitational potential during the merger. In this case, the angular momentum is not as efficiently transfered to the outer parts of the galaxy: the merger remnant keeps thus a strong and regular rotation. At higher resolution, the scattering of the orbit is resolved and the merger remnant may end-up with, under some special initial conditions, a slow rotation and may form a KDC.
16

τ Sco: The Discovery of the Clones

Petit, Véronique, Massa, Derck L., Marcolino, Wagner L.F., Wade, Gregg A., Ignace, Richard 12 July 2011 (has links)
The B0.2 V magnetic star τ Sco stands out from the larger population of massive magnetic OB stars due to its remarkable, superionized wind, apparently related to its peculiar magnetic field - a field which is far more complex than the mostly-dipolar fields usually observed in magnetic OB stars. τ Sco is therefore a puzzling outlier in the larger picture of stellar magnetism - a star that still defies interpretation in terms of a physically coherent model. Recently, two early B-type stars were discovered as τ Sco analogues, identified by the striking similarity of their UV spectra to that of τ Sco, which was - until now - unique among OB stars. We present the recent detection of their magnetic fields by the MiMeS collaboration, reinforcing the connection between the presence of a magnetic field and a superionized wind. We will also present ongoing observational efforts undertaken to establish the precise magnetic topology, in order to provide additional constrains for existing models attempting to reproduce the unique wind structure of τ Sco-like stars.
17

Asymmetric Shapes of Radio Recombination Lines From Ionized Stellar Winds

Ignace, R. 01 April 2019 (has links)
Recombination line profile shapes are derived for ionized spherical stellar winds at radio wavelengths. It is assumed that the wind is optically thick owing to free-free opacity. Emission lines of arbitrary optical depth are obtained assuming that the free-free photosphere forms in the outer, constant expansion portion of the wind. Previous works have derived analytic results for isothermal winds when the line and continuum source functions are equal. Here, semi-analytic results are derived for unequal source functions to reveal that line shapes can be asymmetric about line center. A parameter study is presented and applications discussed.
18

Coordinated UV and X-Ray Spectroscopic Observations of the O-type Giant ξ Per: The Connection between X-Rays and Large-scale Wind Structure

Massa, Derck, Oskinova, Lida, Prinja, Raman, Ignace, Richard 01 January 2019 (has links)
We present new, contemporaneous Hubble Space Telescope STIS and XMM-Newton observations of the O7 III(n)((f)) star ξ Per. We supplement the new data with archival IUE spectra, to analyze the variability of the wind lines and X-ray flux of ξ Per. The variable wind of this star is known to have a 2.086-day periodicity. We use a simple, heuristic spot model that fits the low-velocity (near-surface) IUE wind line variability very well, to demonstrate that the low-velocity absorption in the new STIS spectra of N iv λ1718 and Si iv λ1402 vary with the same 2.086-day period. It is remarkable that the period and amplitude of the STIS data agree with those of the IUE spectra obtained 22 yr earlier. We also show that the time variability of the new XMM-Newton fluxes is also consistent with the 2.086-day period. Thus, our new, multiwavelength coordinated observations demonstrate that the mechanism that causes the UV wind line variability is also responsible for a significant fraction of the X-rays in single O stars. The sequence of events for the multiwavelength light-curve minima is Si iv λ1402, N iv λ1718, and X-ray flux, each separated by a phase of about 0.06 relative to the 2.086-day period. Analysis of the X-ray fluxes shows that they become softer as they weaken. This is contrary to expectations if the variability is caused by periodic excess absorption. Furthermore, the high-resolution X-ray spectra suggest that the individual emission lines at maximum are more strongly blueshifted. If we interpret the low-velocity wind line light curves in terms of our model, it implies that there are two bright regions, i.e., regions with less absorption, separated by 180°, on the surface of the star. We note that the presence and persistence of two spots separated by 180° suggest that a weak dipole magnetic field is responsible for the variability of the UV wind line absorption and X-ray flux in ξ Per.
19

X-Ray Spectroscopy of Massive Stellar Winds: Previous and Ongoing Observations of the Hot Star ζ Pup

Miller, N., Waldron, W., Nichols, J., Huenemoerder, D., Dahmer, M., Ignace, R., Lauer, J., Moffat, A., Nazé, Y., Oskinova, L., Richardson, N., Ramiaramanantsoa, T., Shenar, T., Gayley, K. 01 January 2019 (has links)
The stellar winds of hot stars have an important impact on both stellar and galactic evolution, yet their structure and internal processes are not fully understood in detail. One of the best nearby laboratories for studying such massive stellar winds is the O4I(n)fp star ζ Pup. After briefly discussing existing X-ray observations from Chandra and XMM, we present a simulation of X-ray emission line profile measurements for the upcoming 840 kilosecond Chandra HETGS observation. This simulation indicates that the increased S/N of this new observation will allow several major steps forward in the understanding of massive stellar winds. By measuring X-ray emission line strengths and profiles, we should be able to differentiate between various stellar wind models and map the entire wind structure in temperature and density. This legacy X-ray spectrum of ζ Pup will be a useful benchmark for future X-ray missions.
20

Radio Variability From Corotating Interaction Regions Threading Wolf-Rayet Winds

Ignace, Richard, St-Louis, Nicole, Prinja, Raman K. 01 September 2020 (has links)
The structured winds of single massive stars can be classified into two broad groups: stochastic structure and organized structure. While the former is typically identified with clumping, the latter is typically associated with rotational modulations, particularly the paradigm of corotating interaction regions (CIRs). While CIRs have been explored extensively in the ultraviolet band, and moderately in the X-ray and optical, here we evaluate radio variability from CIR structures assuming free-free opacity in a dense wind. Our goal is to conduct a broad parameter study to assess the observational feasibility, and to this end, we adopt a phenomenological model for a CIR that threads an otherwise spherical wind. We find that under reasonable assumptions, it is possible to obtain radio variability at the 10 per cent level. The detailed structure of the folded light curve depends not only on the curvature of the CIR, the density contrast of the CIR relative to the wind, and viewing inclination, but also on wavelength. Comparing light curves at different wavelengths, we find that the amplitude can change, that there can be phase shifts in the waveform, and the entire waveform itself can change. These characterstics could be exploited to detect the presence of CIRs in dense, hot winds.

Page generated in 0.048 seconds