• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 722
  • 78
  • 21
  • 17
  • 16
  • 14
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • Tagged with
  • 1205
  • 374
  • 237
  • 226
  • 217
  • 189
  • 182
  • 149
  • 145
  • 121
  • 121
  • 119
  • 82
  • 81
  • 80
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Investigating Burnout among University Students in a Post-Disaster Environment: Was there enough Support?

Rae, Sonja January 2014 (has links)
Tertiary students, not just working populations, might be experiencing feelings of burnout following the Christchurch earthquakes of 2010 and 2011. In the aftermath of a major disaster, the gap between the resources available to handle pressures (e.g., support) and the demands inherent in the pursuit of an academic degree (e.g., heavy workload) may lead to feelings of burnout among students. This study hypothesised that burnout dimensions (emotional exhaustion and disengagement) would be related to students’ perceptions of immediate institutional support, extended institutional support, peer support, family support, and work overload. Additionally, it was proposed that institutional and social support would moderate the relationship between work overload and burnout. Two hundred and seventy one third and fourth year students were sampled using an online questionnaire. These particular students were expected to be at greater risk of emotional exhaustion and academic disengagement because they were at the earliest stage of their tertiary education when the major earthquakes first hit. Family support and extended institutional support were found to be associated with decreased levels of emotional exhaustion and disengagement. Meanwhile, work overload was found to be related to increased levels of emotional exhaustion and disengagement. Furthermore, both peer support and immediate institutional support were found to have a moderating effect on the relationship between work overload and disengagement. This study has exposed unique findings which contribute to burnout research especially in a post-disaster context, and raises the importance of providing the right types of support for individuals who are particularly dealing with the consequences of a natural disaster.
402

Assessment of coseismic landsliding from an Alpine fault earthquake scenario, New Zealand

Robinson, Thomas Russell January 2014 (has links)
Disasters can occur without warning and severely test society’s capacity to cope, significantly altering the relationship between society and the built and natural environments. The scale of a disaster is a direct function of the pre-event actions and decisions taken by society. Poor pre-event planning is a major contributor to disaster, while effective pre-event planning can substantially reduce, and perhaps even avoid, the disaster. Developing and undertaking effective planning is therefore a vital component of disaster risk management in order to achieve meaningful societal resilience. Disaster scenarios present arguably the best and most effective basis to plan an effective emergency response to future disasters. For effective emergency response planning, disaster scenarios must be as realistic as possible. Yet for disasters resulting from natural hazards, intricately linked secondary hazards and effects make development of realistic scenarios difficult. This is specially true for large earthquakes in mountainous terrain. The primary aim of this thesis is therefore to establish a detailed and realistic disaster scenario for a Mw8.0 earthquake on the plate boundary Alpine fault in the South Island of New Zealand with specific emphasis on secondary effects. Geologic evidence of re-historic earthquakes on this fault suggest widespread and large-scale landsliding has resulted throughout the Southern Alps, yet, currently, no attempts to quantitatively model this landsliding have been undertaken. This thesis therefore provides a first attempt at quantitative assessments of the likely scale and impacts of landsliding from a future Mw8.0 Alpine fault earthquake. Modelling coseismic landsliding in regions lacking historic inventories and geotechnical data (e.g. New Zealand) is challenging. The regional factors that control the spatial distribution of landsliding however, are shown herein to be similar across different environments. Observations from the 1994 Northridge, 1999 Chi-Chi, and 2008 Wenchuan earthquakes identified MM intensity, slope angle and position, and distance from active faults and streams as factors controlling the spatial distribution of landsliding. Using fuzzy logic in GIS, these factors are able to successfully model the spatial distribution of coseismic landsliding from both the 2003 and 2009 Fiordland earthquakes in New Zealand. This method can therefore be applied to estimate the scale of landsliding from scenario earthquakes such as an Alpine fault event. Applied to an Mw8.0 Alpine fault earthquake, this suggests that coseismic landsliding could affect an area >50,000 km2 with likely between 40,000 and 110,000 landslides occurring. Between 1,400 and 4,000 of these are expected to present a major hazard. The environmental impacts from this landsliding would be severe, particularly in west-draining river catchments, and sediment supply to rivers in some catchments may exceed 50 years of background rates. Up to 2 km3 of total landslide debris is expected, and this will have serious and long-term consequences. Fluvial remobilisation of this material could result in average aggradation depths on active alluvial fans and floodplains of 1 m, with maximum depths substantially larger. This is of particular concern to the agriculture industry, which relies on the fertile soils on many of the active alluvial fans affected. This thesis also investigated the potential impacts from such landsliding on critical infrastructure. The State Highway and electrical transmission networks are shown to be particularly exposed. Up to 2,000 wooden pole and 30 steel pylon supports for the transmission network are highly exposed, resulting in >23,000 people in the West Coast region being exposed to power loss. At least 240 km of road also has high exposure, primarily on SH6 between Hokitika and Haast, and on Arthur’s and Lewis Passes. More than 2,750 local residents in Westland District are exposed to isolation by road as a result. The Grey River valley region is identified as the most critical section of the State Highway network and pre-event mitigation is strongly recommended to ensure the road and bridges here can withstand strong shaking and liquefaction hazards. If this section of the network can remain functional post-earthquake, the emergency response could be based out of Wellington using Nelson as a forward operating base with direct road access to some of the worst-affected locations. However, loss of functionality of this section of road will result in >24,000 people becoming isolated across almost the entire West Coast region. This thesis demonstrates the importance and potential value of pre-event emergency response planning, both for the South Island community for an Alpine fault earthquake, and globally for all such hazards. The case study presented demonstrates that realistic estimates of potential coseismic landsliding and its impacts are possible, and the methods developed herein can be applied to other large mountainous earthquakes. A model for developing disaster scenarios in collaboration with a wide range of societal groups is presented and shown to be an effective method for emergency response planning, and is applicable to any hazard and location globally. This thesis is therefore a significant contribution towards understanding mountainous earthquake hazards and emergency response planning.
403

The effects of an Alpine Fault earthquake on the Taramakau River, South Island New Zealand.

Sheridan, Mattilda January 2014 (has links)
An Alpine Fault Earthquake has the potential to cause significant disruption across the Southern Alps of the South Island New Zealand. In particular, South Island river systems may be chronically disturbed by the addition of large volumes of sediment sourced from coseismic landsliding. The Taramakau River is no exception to this; located north of Otira, in the South Island of New Zealand, it is exposed to natural hazards resulting from an earthquake on the Alpine Fault, the trace of which crosses the river within the study reach. The effects of an Alpine Fault Earthquake (AFE) have been extensively studied, however, little attention has been paid to the effects of such an event on the Taramakau River as addressed herein. Three research methods were utilised to better understand the implications of an Alpine Fault Earthquake on the Taramakau River: (1) hydraulic and landslide data analyses, (2) aerial photograph interpretation and (3) micro-scale modelling. Data provided by the National Institute of Water and Atmospheric Research were reworked, establishing relationships between hydraulic parameters for the Taramakau River. Estimates of landslide volume were compared with data from the Poerua landslide dam, a historic New Zealand natural event, to indicate how landslide sediment may be reworked through the Taramakau valley. Aerial photographs were compared with current satellite images of the area, highlighting trends of avulsion and areas at risk of flooding. Micro-scale model experiments indicated how a braided fluvial system may respond to dextral strike-slip and thrust displacement and an increase in sediment load from coseismic landslides. An Alpine Fault Earthquake will generate a maximum credible volume of approximately 3.0 x 108 m3 of landslide material in the Taramakau catchment. Approximately 15% of this volume will be deposited on the Taramakau study area floodplain within nine years of the next Alpine Fault Earthquake. This amounts to 4.4 x 107 m3 of sediment input, causing an average of 0.5 m of aggradation across the river floodplains within the study area. An average aggradation of 0.5 m will likely increase the stream height of a one-in-100 year flood with a flow rate of 3200 m3/s from seven metres to 7.5 m overtopping the road and rail bridges that cross the Taramakau River within the study area – if they have survived the earthquake. Since 1943 the Taramakau River has shifted 500 m away from State Highway 73 near Inchbonnie, moving 430 m closer to the road and rail. Paleo channels recognised across the land surrounding Inchbonnie between the Taramakau River and Lake Brunner may be reoccupied after an earthquake on the Alpine Fault. Micro-scale modelling showed that the dominant response to dextral strike-slip and increased ‘landslide’ sediment addition was up- and downstream aggradation separated by a localised zone of degradation over the fault trace. Following an Alpine Fault Earthquake the Taramakau River will be disturbed by the initial surface rupture along the fault trace, closely followed by coseismic landsliding. Landslide material will migrate down the Taramakau valley and onto the floodplain. Aggradation will raise the elevation of the river bed promoting channel avulsion with consequent flooding and sediment deposition particularly on low lying farmland near Inchbonnie. To manage the damage of these hazards, systematically raising the low lying sections of road and rail may be implemented, strengthening (or pre-planning the replacement of) the bridges is recommended and actively involving the community in critical decision making should minimise the risks of AFE induced fluvial hazards. The response of the Taramakau River relative to an Alpine Fault Earthquake might be worse, or less severe or significantly different in some way, to that assumed herein.
404

Eastside story : the perceived impact of the Canterbury earthquakes on teacher performance.

McDonald, Alexandra Dorothy Jean January 2014 (has links)
It is reported that natural disasters such as earthquakes impact significantly upon survivors’ psychological wellbeing. Little is known however about the impact of disasters upon the professional performance of survivor employees such as teachers. Using a survey research design with an emphasis upon a qualitative data collection, 39 teachers from 6 schools in the eastern suburbs of Christchurch, New Zealand rated the impact of the 2010 and 2011 earthquakes upon their professional performance and 13 volunteered to participate in a follow up focus group interviews. The data collected was interpreted via three theoretical/policy frameworks: the New Zealand Teacher Council mandatory requirements for teachers, the basic psychological needs theory and the inclusive transactional model of stress. Contrary to expectations, relationships with learners, colleagues, learner's whanau (family) and the wider community were on the whole perceived to be positively impacted by the earthquakes, while participation in professional development was regarded in more negative terms. The results indicated that teachers were able to continue (despite some stress reactions) because the basic psychological needs of being a teacher were not disrupted and indeed in some cases were enhanced. A model of teacher performance following a natural disaster is presented. Recommendations and implications (including future research undertakings) arising from the study are indicated. It was noted that given the importance of the school in supporting community recovery following a disaster, support for them and consideration of the role of teachers and the preparation for this should be given some priority.
405

Quake aftermath: Christchurch journalists' collective trauma experience and the implications for their reporting.

Scanlon, Sean Kevin January 2014 (has links)
On February 22, 2011, Christchurch-based journalists were jolted out of their normal work routine by a large 6.3 magnitude earthquake that killed 185 people, wrecked the city and forced reporters to reappraise their journalism. This study considers how the earthquake affected journalists’ relationship to the community, their use of sources and news selection. A theory of collective trauma is used to explain the changes that journalists made to their reporting practice. Specifically, Christchurch journalists had a greater identification and attachment to their audience post-earthquake. Journalists viewed themselves as part of the earthquake story, which prompted them to view sources differently, use those sources differently and see advocacy as a keystone of their news work after the disaster. This study adds to a growing scholarship about journalists and trauma, but focuses on what the event meant for local reporters’ choice of sources and news selection rather than measuring rates of psychological distress.
406

One- and Three-dimensional P- and S-wave Velocity Models of Central and Southern Sweden Based on SNSN Data

Chan, Ne Xun January 2014 (has links)
The velocity structures of southern and central part of Sweden have been derived with the local tomography (LET) method. The region has been divided into two study areas and the datasets come from the P- and S-wave traveltimes recorded by the Swedish National Seismic Network (SNSN). Man-made explosions and earthquakes occurring over the period of 5 years and 10 years, respectively, within the study areas have been used. One-dimensional starting models were derived based on an a priori model obtained from the SNSN, that were later used for starting models in the inversion for the 3-D crustal structures of the study areas. Attempts were also made to invert for Moho topography in the areas. The study areas are found to have an upper-crustal thickness of approximately 20 to 25 km and the Moho boundaries vary from 42 to 46 km in depth. The Vp/Vs ratios varies from about 1.68 to 1.78. The LET method appear to resolve the different between the Sveconorgwegian and Svecofennian orogen regions, but the stations and sources are too sparsely distributed for higher resolution models. The seismicity in the study areas are distributed in two distinctive depth ranges. The focal depth of the SNSN catalogued earthquakes concentrated in approximately 5 km and 15 - 20 km depth. Relocations of the earthquakes using a global search method reduced this tendency. The results also show that using 3-D models produces less biased results than using 1-D models with the same relocation method.
407

Erdbebenbeobachtung im Freistaat Sachsen : Dreijahresbericht ...

22 July 2014 (has links)
No description available.
408

Erdbebenbeobachtung im Freistaat Sachsen : Dreijahresbericht

22 July 2014 (has links) (PDF)
In Sachsen liegt der Schwerpunkt der seismischen Aktivität im westsächsisch-ostthüringischen Raum. Ausgehend vom Vogtland verläuft die erdbebengefährdete Zone über das Gebiet von Zwickau und Gera-Ronneburg bis in den Raum von Leipzig. Die Broschüre fasst die Ergebnisse der Erdbebenbeobachtung in Sachsen bzw. Mitteldeutschland im Zeitraum 2010-2012 zusammen und berichtet über die Arbeit des Seismologie-Verbundes. Dargestellt wird auch der Erdbebenschwarm im August/September 2012. Weitere Schwerpunkte bilden die Beschreibung der seismologischen Netze (SXNET und TSN) in Mitteldeutschland und ein Überblick über die Untersuchungen auf dem Gebiet der Seismohydrologie zur Erdbebenprognose im Vogtland.
409

Global Risk Assessment of Natural Disasters: new perspectives

Mona, Khaleghy Rad 18 October 2014 (has links)
Natural disasters such as earthquakes, tsunamis, landslides and volcanic activities has had devastating effects on human life. Risk is the probability of harmful consequences from the interaction of hazards and vulnerable conditions. With increasing numbers of people living in crowded cities and other vulnerable areas, it is more important than ever to advance our understanding of natural disasters and the ways in which humans respond to them. My interdisciplinary study reflected in my thesis includes integrated research on the risk assessment methods for natural hazards with focus on earthquake disasters. This thesis address firstly the development of a scaled risk assessment framework, comparative assessment of natural hazard losses, including respective case studies and global overview of natural hazard risk, and secondly a comparative risk assessment of geological disasters to elaborate the major disastrous hazards for global population. Furthermore, I evaluate the effect of past events in form of the number of losses with respect to the exposed population on the proneness of people to the disaster. I summarize acceptable risk criteria and the necessity of having a normalized framework for societal risk assessment. I evaluate the natural hazard risk assessment and acceptable risk criteria of 32 European countries. I also introduce the concept of resistance in both risk equation and in FN-curves. Resistance is the societal resilience of a society to the occurrence of a natural disaster. Moreover, using components of FN-curves (slopes and intercepts) for risk assessment of geological disasters based on real data, I showed that the world has been more at risk of earthquakes than tsunamis, volcanic activities and landslides since 1600. Also. based on the earthquake disasters data (1973-2010), I evaluated the temporal trend of hazard, risk, exposure and resistance of the world towards earthquake disasters. Our results does not provide any evidence of increase or decrease in the temporal trend of fatality rate and earthquake resistance while there is a significant decrease in the crude death rate. Finally, we evaluated the reliability of earthquake disaster system during 1950-2012 using probability of more than 1000 fatalities as probability of failure. Our yearly estimate of reliability at the beginning of each mission year shows that the avreage reliability of earthquake disaster system is very low (~0.3) and it is decreasing over time, too.
410

Title: Study of anomalous VLF perturbations in possible relation to seismic activity.

Brijraj, Sahil. January 2011 (has links)
Anomalous perturbations of the ionosphere have been observed either as uctuations in the critical frequency of the F-region ionosphere, foF2, or as uctuations in the nighttime VLF signals that propagate through the Earth Ionosphere Waveguide. All anomalies appear from an earliest of three weeks to one day prior to an earthquake occurrence, hence leading to be used as possible presursors and aid in short term earthquake prediction. Earthquakes of magnitude 5.5 and greater have a signi cant chance of having associated ionospheric anomalies, and anomalies are only detected within a radius of 500km from the epicentre. Solar events, however, greatly a ect the ionosphere and make seismogenic ionospheric signals di cult to isolate. This study concentrates on anomalous VLF signal perturbations observed along the propagation path between the NWC transmitter in Australia and narrowband receivers in Budapest and Tihany, Hungary for July 2007 to February 2008. Comparisons of anomaly appearances and seismic activity occurring within the Dobrovolsky area to the propagation path were carried out, with anomalies being observed predominantly prior to major seismic events. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.

Page generated in 0.036 seconds