• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 1
  • Tagged with
  • 22
  • 16
  • 14
  • 12
  • 11
  • 8
  • 8
  • 8
  • 7
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and implementation process for controls integration using CAN bus on a full function electric vehicle conversion

Provencher, Hugo 01 March 2014 (has links)
From the electrical engineering perspective, this thesis addresses the design and implementation of the conversion process from a hybrid electric to a full function electric vehicle (FFEV). The architecture selection process and main components of an electric vehicle (EV) are described, and an exhaustive literature review on the controller area network (CAN) is presented. The electrical and control system integration strategy is explained, along with the model-based algorithm programmed into the vehicle integration module (VIM). Emulating electronic control units (ECUs) from the original powertrain and controlling additional ones for the electrical drivetrain through CAN bus, along with keeping the same functionalities of a typical production vehicle makes this vehicle conversion similar to a factory built model. Finally, the tests and results originating from this conversion to a full electric powertrain are discussed. The vehicle features a 83.5 kWh Li-ion battery built in-house, resulting in an estimated range of 482 km.
2

A real-time hybrid vehicle control strategy and testing platform

Wise, Jeremy 15 July 2011 (has links)
In this paper, the need to develop a control strategy and test apparatus for next generation hybrid vehicles was realized. The complexity of today’s and future hybrid vehicles necessitates the need for an equally advanced method of control that can extract the optimal fuel economy from the system as a whole. A review of existing hybrid vehicle control strategies was performed. Overall, much research has been done on the optimization of series and parallel type vehicles, but virtually no information was found on the optimal use of advanced powersplit drivetrains. However, the control strategy concepts explored in the literature are useful, and can be extended to complex architectures like the General Motors Two-Mode design. The equivalent consumption minimization strategy (ECMS) method developed by Rizzoni et al at the Ohio State University has proven to be a well developed control strategy that has seen much progress over the last decade. Although it has been only demonstrated on parallel-type vehicles, it was chosen as the basis for the control strategy methodology. An in-depth analysis on the Two-Mode transmission operation was performed. The fundamental equations for each of its range states were derived for future use in developing a plant model, and for use in control strategy development. The torque and speed capabilities of each of its modes and gears were analysed. A detailed plant model was created to form a virtual test bed for control strategy development purposes. The models use empirical data provided by manufactures, which ensures a reasonable level of accuracy in portraying component constraints and efficiencies. Building on the ECMS, a similar hybrid vehicle control strategy was developed for Two-Mode transmission based vehicles. It was modified to handle two degrees of freedom as required by the system. Its objective is to constantly minimize the total equivalent power use in the system which is defined as the sum of the chemical power in the fuel and the power used by the battery multiplied by an equivalency factor. Overall, the control strategy provides a strong basis for the optimal control of nextgeneration hybrid vehicles incorporating powersplit transmissions. It is suggested that further research be explored in combining rule-based control methods with the developed optimization based method since rule-based methods can add the stability required for enhanced drivability. / Graduate / 10000-01-01
3

Design, Optimization, and Validation of a Rear Subframe to allow for the Integration of an Electric Powertrain

Longmire, Leala S. January 2020 (has links)
No description available.
4

Propulsion System Integration of a Parallel Through The Road Hybrid Electric Vehicle

George, Andrew January 2020 (has links)
This thesis outlines the mechanical design and integration of a P0/P4 Parallel Through-the-Road Hybrid Electric Vehicle. The vehicle is McMaster University’s entrant into the EcoCAR Mobility Challenge, the current offering of the long running Advanced Vehicle Technology Competition series. The competition challenges students to electrify a 2019 Chevrolet Blazer, while meeting the needs of a car sharing platform. The design of the McMaster vehicle will be explored, starting with a walkthrough of the architecture selection process performed in the first year of competition. The design process of both powertrains will be examined, starting with component selection and working up to assembly integration. Particular attention will be paid to the rear electrified powertrain, which has been designed from the ground up for this purpose, including custom single speed gear reduction. The current integration status of the vehicle will be shown. Timeline delays due to the COVID-19 pandemic will be discussed, as well as next steps to move towards complete vehicle integration. A vehicle testing plan will be put forward, using the cutting edge systems available at the McMaster Automotive Resource Center. / Thesis / Master of Applied Science (MASc) / As Hybrid Electric Vehicles continue to grow in market share, the Advanced Vehicle Technology Competition series seeks to challenge and train students in this booming industry. The current competition in this series is the EcoCAR Mobility Challenge, where students must re-engineer a 2019 Chevrolet Blazer into a hybrid vehicle over four years. The vehicle is to incorporate new autonomous technologies, as well as be targeted at a car sharing application. The McMaster University Engineering EcoCAR team has entered into this competition. This thesis describes the detailed mechanical design of the new vehicle. This begins by examining the selected hybrid layout, or architecture. Then the design process of individual systems is shown, with emphasis on how each system meets the McMaster team goals. Then the current state of the vehicle is shown, and delays due to COVID-19 are discussed. Finally, a testing plan is proposed, to ensure all systems can meet their design goals.
5

Design and Implementation of a Belted Alternator Starter System for the OSU EcoCAR 3 Vehicle

Kibalama, Dennis Ssebina 27 October 2017 (has links)
No description available.
6

Development of a Control System for a P4 Parallel-Through-The-Road Hybrid Electric Vehicle

Haußmann, Mike January 2019 (has links)
This thesis outlines the development of a control system for a P4-P0 Parallel-Through-The-Road Hybrid Electric Vehicle. This project was part of the EcoCAR Mobility Challenge, an Advanced Vehicle Technology Competition, sponsored by the U.S. Department of Energy, MathWorks and General Motors. The McMaster Engineering EcoCAR team is participating in its second iteration, re-engineering a 2019 Chevrolet Blazer to suit a car-sharing service located within the Greater Toronto Hamilton Area. The proposed architecture uses a 1.5L Engine together with a Belted Alternator Starter motor connected to the traditional low voltage system. The rear axle is electrified containing an Electric Machine, a power oriented Battery Pack and team-designed gear reduction as well as a clutch. The whole rear powertrain is operating at high voltage and has no connection to the traditional low voltage system. Fuel economy improvements up to 12% can be expected while maintaining stock performance targets. A vehicle simulation model was built to accompany the vehicle design process. This includes a mathematical representation of all powertrain components, the development of energy management algorithms, the design of the Hybrid Supervisory Controller structure, and validating and discussing gathered results. Furthermore, all necessary controllers were chosen and communication within them was established by designing the serial data architecture. The developed energy management algorithm is customized to utilize the strengths of all components and this specific architecture. A simple rule-based algorithm is used to operate the engine as close as possible to its most fuel efficient operation point at any time. The P4 and P0 motor are used to apply supportive torque to the engine or load the engine with a negative torque. In that way the energy can be regenerated inside the powertrain and charge sustaining operation v can be achieved. Fuel economy and performance targets are used to discuss the assumed performance of the vehicle once re-engineered. The set targets range from city and highway fuel economy to IVM – 60 mph acceleration time. Overall the developed control system suits a car-sharing service with its ability to adapt to the occurring driving situations ensuring a close to optimal operation for any known or unknown driving situation. It focuses on modularity, simplicity and functionality to allow a working implementation in future years of the EcoCAR Mobility Challenge. / Thesis / Master of Applied Science (MASc) / During the re-engineering of a Hybrid Electric Vehicle different expectations must be considered, for example set government fuel economy regulations, defined performance targets, novelty in innovation, stakeholder expectations as well as the used vehicle platform and the available components. The re-engineering process will be done according to the vehicle development process of the EcoCAR Mobility Challenge. Summarized expectations are the use of this vehicle inside a car-sharing service for the Greater Toronto Hamilton Area targeting “Millennials” while focusing on fuel economy improvements and a low cost of ownership. The research shown in this thesis is set by the requirements derived from the expectations mentioned above. One point of interest is achieving a working control system able to operate close to an optimal state to maximize fuel efficiency and ensuring stock vehicle performance targets. Therefore, the control system has to use the electrification components in an intelligent way. Defining what intelligent control of the engine and the electrification components was one of the main challenges. This thesis outlines how developing a control system for a Hybrid Electric Vehicle can be realized while ensuring that all included interests are met. The object of this research contains choosing the necessary controllers, building a sufficient vehicle simulation model, developing the energy management algorithm, validating the model performance and evaluating the gathered results.
7

Model-based design and specification of a hybrid electric Chevrolet Camaro for the EcoCAR 3 competition

Cox, Jonathan Douglas 27 May 2016 (has links)
Georgia Tech has the privilege of competing in EcoCAR 3, a four-year competition in which 16 universities are given a stock 2016 Chevrolet Camaro and work to transform it into a hybrid electric sports car. In this thesis, an overview of the first two years of the author’s work on the team as the Engineering Manager, the graduate student overseeing all vehicle engineering work, will be detailed. The competition will be introduced and described before a discussion on vehicle electrification and the various ways it has been achieved by manufacturers and competition teams. Next, the design of the Georgia Tech vehicle will be presented with a focus on powertrain and supporting component selection. The vehicle model underlying many of these decisions will then be discussed in detail, showing how the team used Simulink and Engineering Equation Solver to effectively predict vehicle performance, emissions, energy consumption, and cooling needs. Building on this, the controls design process known as model/software/hardware in the loop will be discussed in the context of the Georgia Tech team’s use of this process. Finally, a progress update will be given, including photos of the team vehicle in current build state weeks before the Year 2 Competition.
8

Model Based Suspension Calibration for Hybrid Vehicle Ride and Handling Recovery

Organiscak, Matthew Joseph 04 November 2014 (has links)
No description available.
9

Development and Testing of a Hybrid Vehicle Energy Management Strategy

Wu, Justin Quach 26 August 2022 (has links)
An energy management strategy for a prototype P4 parallel hybrid Chevrolet Blazer is developed for the EcoCAR Mobility Challenge. The objective of the energy management strategy is to reduce energy consumption while maintaining the drive quality targets of a conventional vehicle. A comprehensive model of the hybrid powertrain and vehicle physics is constructed to aid in the development of the control strategy. To improve fuel efficiency, a Willans line model is developed for the conventional powertrain and used to develop a rule-based torque split strategy. The strategy maximizes high efficiency engine operation while reducing round trip losses. Calibratable parameters for the torque split operating regions allow for battery state of charge management. Torque request and filtering algorithms are also developed to ensure the hybrid powertrain can smoothly and reliably meet driver demand. Vehicle testing validates that the hybrid powertrain meets acceleration response targets while delivering an enjoyable driving experience. Simulation testing shows that the energy management strategy improved fuel economy in most drive cycles with improvements of 8.8% for US06, 9.8% for HWFET, and 0.1% for the EcoCAR Mobility Challenge Cycle. Battery state of charge management behavior is robust across a variety of drive cycles using inputs from both simulated and test drivers. The resulting energy management strategy delivers an efficient, responsive, and reliable hybrid electric vehicle. / Master of Science / A control strategy for a hybrid vehicle is developed to improve fuel efficiency without sacrificing vehicle responsiveness. Efficiency improvements are achieved by the strategy intelligently selecting to use the engine, motor, or a combination of the two to minimize fuel consumption. The strategy also handles the important tasks of maintaining the battery pack charge and smoothly transitioning between the engine and motor power. All together, this results in a hybrid vehicle with both improved fuel economy and an enjoyable driving experience.
10

Design and Control of a Unique Hydrogen Fuel Cell Plug-In Hybrid Electric Vehicle

Giannikouris, Michael January 2013 (has links)
The University of Waterloo Alternative Fuels Team (UWAFT) is a student team that designs and builds vehicles with advanced powertrains. UWAFT uses alternatives to fossil fuels because of their lower environmental impacts and the finite nature of oil resources. UWAFT participated in the EcoCAR Advanced Vehicle Technology Competition (AVTC) from 2008 to 2011. The team designed and built a Hydrogen Fuel Cell Plug-In Hybrid Electric Vehicle (FC-PHEV) and placed 3rd out of 16 universities from across North America. UWAFT design projects offer students a unique opportunity to advance and augment their core engineering knowledge with hands-on learning in a project-based environment. The design of thermal management systems for powertrain components is a case study for design engineering which requires solving open ended problems, and is a topic that is of growing importance in undergraduate engineering courses. Students participating in this design project learn to develop strategies to overcome uncertainty and to evaluate and execute designs that are not as straightforward as those in a textbook. Electrical and control system projects require students to introduce considerations for reliability and robustness into their design processes that typically only focus on performance and function, and to make decisions that balance these considerations in an environment where these criteria impact the successful outcome of the project. The consequences of a failure or unreliable design also have serious safety implications, particularly in the implementation of powertrain controls. Students integrate safety into every step of control system design, using tools to identify and link together component failures and vehicle faults, to design detection and mitigation strategies for safety-critical failures, and to validate these strategies in real-time simulations. Student teams have the opportunity to offer a rich learning environment for undergraduate engineering students. The design projects and resources that they provide can significantly advance student knowledge, experience, and skills in a way that complements the technical knowledge gained in the classroom. Finding ways to provide these experiences to more undergraduate students, either outside or within existing core courses, has the potential to enhance the value of program graduates.

Page generated in 0.0355 seconds