• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 7
  • Tagged with
  • 34
  • 34
  • 34
  • 18
  • 11
  • 11
  • 11
  • 10
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Vegetation and soil characteristics around water points under three land management systems in semi-arid rangelands of the Eastern Cape, South Africa

Simanga, Siyabulela January 2013 (has links)
This study investigated the vegetation and soil characteristics in relation to distance from water points under different land management systems in semi-arid rangelands of South Africa. Six study sites, two each from communal grazing, commercial farming and game reserves were selected. Two watering points were selected in each study site. Two 500 m transects were laid from the selected watering points. Each transect was divided into sub-transects at 25 m, 50m, 100m, 200m, 300m and 500m from water points. A 100 m2 plot was marked in each sub-transect to record grass biomas, species composition, structure and distribution of woody vegetation and physical and chemical soil properties. Data were collected for two seasons 2012/13 (winter and summer). Thirty and 41 grass and woody species respectively were identified in all study areas. The most common and dominating grass species include Cynodon dactylon, Digitaria eriantha, Eragrostis obtusa, Setaria sphacelata and Sporobolus fimbriatus. Cynodon dactylon and S. sphacelata occurred more abundantly (p < 0.05) in the game reserves than in the other land management catergories. All the grass species had similar (p > 0.05) abundance along distance gradient from water points. Grass dry matter (GDM) showed significant differences (p < 0.05) between and within land management systems. However, GDM was not significantly affected by season, location of water point within each farm or reserve and distance along water points. Acacia karoo, Coddia rudis and Ehretia rigida were the most dominant woody species. Tree equivalent (TE) density of all encroaching woody plants combined was significantly (p < 0.05) higher on the communal area (1732 TE ha-1) than the commercial ranches (1136 TE ha-1) and game reserves (857 TE ha-1), but with no marked variations along distance from water points under all the land management systems. The electric conductivity (EC) was significantly (P < 0.01) higher in game reserves than in communal grazing areas and ranches. Soil organic matter percentage showed greatest and lowest values in the game reserves and commercial respectively. Soil pH and bulk density did not vary but soil organic matter (SOM), EC, bulk density and soil compaction were significant different with no increasing or decreasing trends. Soil properties were affected by herbivore pressure and trampling around water points with inconsistence magnitude and direction. In conclusion, grass species composition and GDM did not respond to distance from water points because either grazing gradient was absent or the length of transects was not enough to explain the absence or presence of gradients. High proportion of A. karoo and high densities of seedlings and saplings would seem as very good indicators of the woody vegetation changes in the different land management systems and distance from water points. The soil quality indicators around the water-points showed that livestock and game affected soil parameters.
22

Influence of Turbidity on Fish Distribution, Diet and Foraging Success of Largemouth Bass

Huenemann, Thad William 01 May 2010 (has links)
Turbidity is an important measurement of water quality, considering it describes water clarity and is an indirect indicator of light transmittance in the water column. Turbidity may impact fish that rely on vision to forage by affecting ability to search for prey. Largemouth bass (LMB; Micropterus salmoides) is a visual predator that may have lower foraging success resulting in reduced growth, reproduction, or survival under conditions of high turbidity. I conducted a field experiment in Wolf Lake, Mississippi to assess impacts of turbidity on diet and distribution and a laboratory experiment with manipulated turbidity levels (0 – 250 NTU) to assess foraging efficiency of LMB. There were no significant relationships between turbidity and diet or distribution in the field study. However, there were significant effects of turbidity on foraging efficiency in laboratory trials. These results indicate that assessing turbidity is important to manage LMB in systems susceptible to high turbidity levels.
23

Validation of laboratory versus field avoidance behavior of schooling fathead minnows to heavy metal blends relative to acute toxicity during long term exposure

Hartwell, S. Ian January 1985 (has links)
Avoidance to a blend of four metals (relative proportions: 1.00 copper, 0.54 chromium, 1.85 arsenic, 0.38 selenium) was determined for schools of fathead minnows (<i>Pimephales promelas</i>) in a laboratory avoidance chamber, an artificial stream and in a natural stream setting on a seasonal basis during continuous exposure to low levels of the metal blend for up to 9 months. Laboratory avoidance responses were determined seasonally during 12 months of laboratory holding for unexposed (control) fish and two levels of metal blend exposure in a steep gradient laminar flow chamber. Toxicity of the metal blend was determined for laboratory and field, control and metals acclimated fish. Unexposed fish avoided very low levels of the blend (29 ug/L total metals). Fish exposed to low levels of the blend (49 ug/L total metals) for 3 months failed to avoid levels equal to 5X holding exposure levels. Fish exposed to higher levels of the blend (98 ug/L total metals) preferred elevated levels (3X holding exposure) after 3 months exposure, mildly avoided 5X holding levels after 6 months exposure and were not responsive to levels approaching 10X holding exposure after 9 months continuous exposure. Activity was not affected by long term exposure. Field avoidance responses were determined seasonally during 7 months of field laboratory holding in New River water for unexposed (control) fish and exposed (98 ug/L total metals) fish in a modified artificial stream supplied with raw New River water. Unexposed fish avoided 71.1 and 34.3 ug/L total metals in spring (3 months holding) and summer (6 months holding) respectively. After 3 months exposure in New River water, fish did not respond to metal blends as high as 1,470 ug/L total metals. In-stream avoidance responses were determined in the summer for unexposed (control) and exposed I (98 ug/L total metals) fish in a Adair Run, a second order tributary to the New River. Unexposed fish avoided 73.5 ug/L total metals in Adair Run. After 3 months exposure, in New River water fish did not respond to metal blends as high as 2,940 ug/L in Adair Run. Water hardness, turbidity and physical setting are implicated as possible causative factors for differences between control fish responses tested in different seasonal and locations. Fish exposed to the high level exposure in the laboratory had a 96-hr LC50 value 1.25X higher than laboratory control fish. Laboratory control fish avoided metals levels at 0.4% of their 96-hr LC50. Fish exposed to the metals blend in the field had a 96-hr LC50 value 1.41X higher than field control fish. Field control fish avoided metals levels between 0.7 and 2.5% of their 96-hr LC50 depending upon test location and season. There was no difference between the 96-hr LC50s of laboratory vs field control fish or between laboratory vs field exposed fish. Optimum statistical methods for analyzing avoidance behavior in schooling fish were developed. / Ph. D.
24

An assessment of the effects of small-scale farming on macro-invertebrate and diatom community structure in the Vhembe District, Limpopo

30 June 2015 (has links)
M.Sc. (Zoology) / The Limpopo Province covers an area of 12.46 million hectares and these accounts for 10.2 per cent of the total land area of the Republic of South Africa. The province is endowed with abundant agricultural resources and it is one of the country’s prime agricultural regions noted for the production of fruits and vegetables, cereals, tea, and sugar. A key feature of the agricultural industry of Limpopo Province is its dualism. There are two distinct types of agricultural production systems. The large scale commercial farming system occupies approximately 70% of the total land area. The smallholder farms are located mostly in the former homeland areas and they cover approximately 30% of the provincial land surface area. The town of Thohoyandou, with its surrounding villages, is the area of greatest human concentration in the Luvuvhu Catchment and subsistence farming is about a third of the total agricultural component. It is important to study the effects of agricultural inputs (e.g. fertilizers and sediment loads) on aquatic ecosystems in order to fully understand the processes involved of these stresses on aquatic ecosystems. Knowledge of these impacts toward the environment and human health is often limited due to lack of capacity building, especially among small scale farmers. Ten bio-monitoring sites were studied on five systems in the Vhembe district. The sites were sampled during the low flow period of November 2011 and the high flow period of April 2012. Sampling sites were selected to present conditions in the Mutale, Mutshindudi and Tshinane Rivers upstream and downstream of the potential influence of small scale agricultural activities...
25

Water quality and welfare assessment on United Kingdom trout farms

MacIntyre, Craig Mackenzie January 2008 (has links)
Interest in the subject of fish welfare is continuing to grow, with increasing public awareness and new legislation in the UK. Water quality has long been recognised as being of prime importance for welfare: water provides the fish with oxygen and removes and dilutes potentially toxic waste metabolites. This thesis investigates the interactions between water quality and the welfare of farmed rainbow trout (Oncorhynchus mykiss Walbaum). A literature review was undertaken to identify current recommended water quality limits for the health and welfare of farmed rainbow trout. Contradictions in the literature regarding suggested ‘safe’ water quality limits were also identified, as were deficiencies in some of the methods used to arrive at conclusions for recommended limits. The literature relating to the effects of poor water quality on welfare were also reviewed. The review ends with a discussion about water quality monitoring in the context of on-farm welfare assessment and how the information might be used in such a scheme. A telephone survey of UK rainbow trout farmers was undertaken to ascertain the level of water quality monitoring currently conducted. Participants in this study accounted for over 80% of 2005 UK rainbow trout production. It was established that 54% of farmers monitored dissolved oxygen to some extent and 69% monitored temperature, the most commonly measured water quality parameters and among the most important for health, welfare and growth. Subsequent visits were made to a sample of the participants in the telephone survey to obtain more detailed information of the farming operations, such as frequency of water quality monitoring, retention of production data and slaughter methods. Monitoring water quality will be an integral part of any on-farm welfare assessment scheme, and while measuring some water quality parameters requires specialist equipment, farmers should be able to monitor the essential parameters, dissolved oxygen and temperature. Any on-farm welfare assessment scheme for rainbow trout should incorparate fish-based measures in addition to resource-based parameters in order to provide as complete an overview of trout welfare as possible. An epidemiological study was undertaken to investigate the current status of welfare on UK rainbow trout farms and to identify risk factors for welfare. Forty-four trout farms from throughout the British Isles were visited between July 2005 and April 2007, sampling a total of 3700 fish from 189 different systems. Farms were visited twice, once in winter and once in summer, to account for any seasonal differences in fish physiology and environmental conditions. Data were collected on a range of fish parameters, together with background information on the batch from which the fish originated. Particular emphasis was placed on water quality due to the potential effects this can have on welfare. The water in each system sampled was monitored for 24 hours, with measurements of dissolved oxygen, temperature, pH, specific conductivity and ammonia taken every 15 minutes. A welfare score was developed for each fish using a multifactorial method, combining data on the condition of the fins, the condition of the gills, the stress hormone cortisol, the splenosomatic index and the mortality levels for the population of fish in the system. Using this welfare score and the individual components of the score as response variables, multi-level models were developed using the water quality, system and husbandry data collected. The primary risk factor that was associated with deteriorating welfare was disease. The purpose for which the fish was being farmed was also important, as fish farmed for the table market had on average worse welfare than those farmed for restocking fisheries. Seasonal effects, linked to higher water temperatures in summer, were associated with poorer welfare scores. Aside from seasonal effects, there is not much evidence that poor water quality is a major problem for the welfare of farmed rainbow trout in the UK. While deteriorating water quality certainly has the potential to affect the welfare of farmed rainbow trout, water quality measurements were within recommended ranges for the majority of farms visited. The results of this epidemiological study suggest that factors other than water quality may have a greater impact on trout welfare, such as exposure to diseases and production differences between farming for the table and restocking markets.
26

The effect of water and sediment quality on macro-invertebrate communities from selected endorheic pans

Foster, Lee-Ann Sade 30 June 2014 (has links)
M.Sc. (Environmental Management) / Wetlands play a significant role in our environment as they provide a variety of goods, services and benefits to living species ranging from humans, animals and plants to microorganisms. Despite their importance, wetlands have somewhat been neglected over the past few years which has led to a rapid deterioration of wetland conditions and functions. Wetlands provide unique functions that cannot be provided by any other ecosystem; their value was recognised in the 1960s. Prior to this realisation the value of wetlands had been seriously underestimated to the extent where they were even previously labelled as “wastelands”. The reality is that to date minimal measures have been put in place to assist in the rehabilitation and future conservation of wetlands. The lack of wetland management and monitoring can be attributed to the fact that very little is known about the functioning of some of the wetland systems. Endorheic wetlands have recently been emerging as ecosystems of importance. Very little is known about endorheic wetlands and their ecological functioning. To date a fair amount of studies have been conducted on the pans in Mpumalanga and in the Free State but minimal information exists on the pans in the North West Province. The objectives of this study were therefore to compare the abiotic and biotic composition of pans in Mpumalanga and North West Provinces, in order to contribute to the knowledge which will eventually assist in devising rehabilitation measures and future conservation of pans in the area. Three different water ecosystem components were studied; these included aquatic invertebrate communities, water quality and sediment characteristics. The collected water samples were taken to an accredited laboratory to be analysed. When compared between the two provinces, the water-quality results indicated differences between provinces as well as among individual pans. However, most of the pans in both provinces show characteristics of being dystrophic alkaline systems. The invertebrates were collected using sweep nets and stored in jars containing 5% neutrally buffered formalin and a staining agent (Rose Bengal). The sediment characteristics were determined by using standard techniques and results showed that there were no obvious similarities between the different pans in the different provinces. Water-quality analyses were performed on samples taken during both winter- and summer-sampling surveys and these samples were analysed by a reputable laboratory. Based on the analyses of the invertebrate community samples, 25 taxa were identified; results show similarities in the structure of communities in both provinces with the exception of one or two different species. Sampling was conducted over a period of two seasons at all sampling points and several species were found belonging to different families. Invertebrates sampled in Mpumalanga pans were similar to those reported in previous studies done in the area and most of the invertebrates sampled in Mpumalanga and the North West are known to be commonly found in temporary habitats. Spatial and temporal variations in invertebrate assemblages were determined; this analysis displayed differences in the different variables (biotic, physical and chemical) tested over the two seasons. The pans in Mpumalanga were dominated by coarse sand. Large amounts of coarse sand accompanied by poor water quality were observed in MP Pan A in Mpumalanga Province; this could be an indication of somewhat poor catchment management. The results of the abiotic and biotic comparison show that there are minor similarities and differences among the selected pans studied in each province. The knowledge acquired can now be utilised to enhance the available literature on these pans. Long-term studies have to be done to better understand the ecological functioning of the pans in the North West Province in order to devise mitigation measures as well as appropriate rehabilitation strategies and conservation measures.
27

Metal concentrations in the diet and aquatic environment as mechanisms of metal accumulation in selected freshwater fish species

Maartens, Annamien 01 September 2015 (has links)
M.Sc. / The Kruger National Park is internationally one of the best known conservation areas. The perennial rivers draining eastward towards and through the park are of great importance in maintaining a healthy ecosystem. The Olifants River catchment is the largest of all the rivers flowing through the Kruger National Park. Although this river has ceased flow for three days in 1968, problems experienced in the Olifants River are of a qualitative rather than a quantitative nature. Several factors contribute to the deteriorating water quality of the Olifants River. Urbanization, agricultural, industrial and mining activities in the Phalaborwa area pose a threat to the lower parts of the Olifants River. Pollution has on several occasions lead to mortalities of populations of fish in these parts...
28

Water quality dynamics in an experimental serial-use raceway and its effects on growth of South African abalone, Haliotis midae

Naylor, Matthew Aubrey January 2012 (has links)
An understanding of species specific water quality requirements is essential for efficient production of aquaculture products, an aspect not well documented for the land-based culture of the South African abalone, Haliotis midae. In order for the industry to remain competitive in international markets, efficient use of water supplies and the development of water reuse technology is needed. This study assessed the changes in water quality between tanks in a tiered serial-use raceway in relation to accumulated biomass and water flow and estimated the flow index (FI) (L h⁻¹ kg⁻¹) at which growth becomes significantly affected. The effect of dietary protein level, supplementation of pure oxygen and addition of sodium hydroxide (NaOH⁻) on water quality and fundamental production parameters in the serial-use raceways was also assessed. The serial-use raceways were used as a tool to create a range of water quality conditions at which the growth, feed conversion ratio (FCR) and condition factor (CF) of "cocktail" size (60 – 70 mm) H. midae could be monitored. The metabolic activity of the abalone resulted in a deterioration in water quality between tanks in series. pH (r² = 0.99; p < 0.001) and dissolved oxygen concentration (r² = 0.99; p < 0.001) were positively correlated with flow index (pH = 7.38 FI°·°² ; dissolved oxygen = 6.92 FI°·°⁴), while free ammonia nitrogen (FAN) (r² = 0.99, p < 0.001) and nitrite (NO²⁻ - N) (r² = 0.93, p < 0.001) were negatively correlated with flow index (FAN = 8.02 FI⁻°·⁷¹). Nitrite concentrations increased over time indicating colonisation of Nitrosomonas bacteria on the basket surfaces. A flow index of 7.2 – 9.0 L h⁻¹ kg⁻¹ was estimated as the minimum to avoid significant reductions in weight and shell length gain and increases in FCR values. Total ammonia nitrogen (TAN) and FAN concentrations were significantly correlated to dietary protein (P) (t = 6.63, p < 0.0001 and t = 6.41, p < 0.0001, respectively) and flow index (t = 5.42, p < 0.0001 and t = 3.9, p < 0.0002, respectively) and could be estimated using the models TAN = 9.73 P – 110.3 log (FI), and FAN = 0.132 P – 1.10 log (FI). Mean FAN concentrations were 67 and 41 % lower in tanks fed a diet containing 22 and 26 % protein respectively, when compared to tanks fed a 33 % protein diet. Supplementation with pure oxygen (103 ± 8 % saturation) improved shell length gain (t = 3.45, p = 0.026) in abalone exposed to high FAN (2.43 ± 1.1 μg L⁻¹) and low pH (7.6 ± 0.13), relative to a treatment with no oxygen supplementation (92 ± 6 % saturation). Addition of a sodium hydroxide solution resulted in elevated mean pH in treatment raceways when compared to control raceways. The increased pH resulted in significantly higher weight gain (g abalone⁻¹) (F₁·₁₂ = 4.51; p = 0.055) and shell length gain (mm abalone⁻¹) (F₁·₁₂ = 4.56; p = 0.054) at an α-error level of < 5.5 %. In two trials, weight gain and shell length gain were significantly correlated to pH (p < 0.001), and multiple regression of pH, dissolved oxygen and FAN consistently revealed pH to be the best predictor of growth. It is therefore suggested that decreasing pH is the first limiting water quality variable for abalone in serial-use raceways. As a decrease in water pH is linked to respiration by the abalone and subsequent increase in dissolved carbon dioxide (CO₂) concentration, future studies should examine the effects of CO₂ on H. midae metabolic rate, calcification rate and health. The results of this study will contribute toward our understanding of the specific water quality requirements for H. midae in commercial aquaculture systems, and influence the design and management procedures for abalone water reuse systems.
29

Interactive effects of Bacillus subtilis and elevated temperature on germination, growth and grain quality of cowpea irrigated with acid mine drainage

Nevhulaudzi, Thalukanyo 02 1900 (has links)
This study’s main goal was to evaluate Bacillus subtilis inoculation and mine water irrigation effect on germination, growth, nodulation, physiology and shoot/grain quality of cowpea genotypes exposed to extreme climatic conditions (elevated temperatures). The first experiment evaluated the interactive effect of Bacillus subtilis (BD233) inoculation and elevated temperature on germination indices and plumule lengths of three genotypes (Asetanapa, Soronko and Nyira) of cowpea. The results showed that interaction between B. subtilis (BD233) and temperature significantly (p<0.05) influenced the germination indices (germination percentage (G%), germination index (GI) and germination rate index (GRI)) and plumule length of cowpea seedlings and genotype responses were significantly different. At elevated temperature (35oC), inoculation with B. subtilis (BD233) enhanced seed germination and growth of cowpea. The second experiment evaluated the effect of temperature on growth and nutritional content of cowpea incubated for seven days in a growth chamber. The results showed that when cowpea genotype, Soronko, was incubated at different temperature regimes, the whole plant biomass, shoot carbon and crude protein contents were significantly affected with temperature increases at all three stages of the plants’ life cycle. The results suggest that the pre-flowering (40 DAP) and flowering (90 DAP) stages of cowpea compared to post-flowering (123 DAP) are more susceptible to elevated temperatures (30-35oC). The third experiment evaluated Bacillus subtilis inoculation and mine water irrigation effect on growth, nodulation, physiology and nutritional content of cowpea under glasshouse conditions. The results revealed that the interaction of B. subtilis (BD233) inoculation and mine water (75% AMD) irrigation was significant for the growth, nodulation, stomatal conductance, chlorophyll contents and shoot/grain nutritional quality of cowpea genotypes. In comparison with control, generally, B. subtilis inoculation enhanced the growth, nodulation and yield of all tested cowpea genotypes and irrigation with mine water significantly influenced the mineral contents in both shoot and grain of cowpea. Taken together, findings in this study have implications for cultivation of cowpea, an important candidate for food/nutrition security in Africa, under future climate change scenarios. / Environmental Sciences / M. Sc. (Environmental Sciences)
30

Responses of Fishes to a Low pH Environment

Prete, Philip J. (Philip John) 08 1900 (has links)
Data were collected from natural and introduced fishes present in Ferndale Lake, a small (120 ha) sport fishing reservoir in Camp County, east Texas. Levels of pH measured in the lake during the study period ranged from 3.5 to 5.3. Monthly field surveys and experimental manipulations were designed to evaluate quantitatively the signs of stress at various biological levels. Lethal limits to low pH were quantified for largemouth bass (Micropterus salmoides) and bluegill (Lepomis macrochirus) to be pH 3.8 and 4.0,respectively. Mean blood pH (+ 1 SD) of 59 bluegill was 7.41 (j 0.16), with no significant difference (P-0.05) among groups from Ferndale Lake and Moss Lake (Cooke Co., Texas) under experimental conditions, even when severe stress was externally apparent. In a dual-trough horizontal pH gradient, bluegill behavioral avoidance was observed at pH levels below 7.0. Individual testing of 40 bluegill in pH gradient of 5.2 to 7.6 resulted in median occupation of pH 7.1,with an interquartile range of pH 6.9 to 7.3. Decreased community structure and population "well being" compared to early studies cannot be attributed entirely to recent acidic condition. Separating potential stress due to lake conditions from that due to heavy biotic predation by sport fishing in a small reservoir is difficult.

Page generated in 0.096 seconds