11 |
Noncommutative gauge theory and k-deformed spacetimeMöller, Lutz. Unknown Date (has links) (PDF)
University, Diss., 2004--München.
|
12 |
Symmetrien, Erhaltungssätze und Bilanzgleichungen in verallgemeinerten Elastizitätstheorien mit Mikrostruktur und Eichfeldtheorien der VersetzungenAnastassiadis, Charalampos. Unknown Date (has links)
Techn. Universiẗat, Diss., 2007--Darmstadt.
|
13 |
The Poisson sigma model quantum theory on topological surfaces /Schwarzweller, Thomas. Unknown Date (has links) (PDF)
University, Diss., 2001--Dortmund.
|
14 |
Construction of minimal gauge invariant subsets of Feynman diagrams with loops in gauge theoriesOndreka, David. Unknown Date (has links)
Techn. University, Diss., 2005--Darmstadt.
|
15 |
Methoden und Anwendungen der Riemannschen Differentialgeometrie in Yang-Mills-TheorienHeck, Thomas 22 December 1993 (has links)
No description available.
|
16 |
Gauge checks, consistency of approximation schemes and numerical evaluation of realistic scattering amplitudesSchwinn, Christian. Unknown Date (has links)
Techn. University, Diss., 2003--Darmstadt.
|
17 |
Dynamische Generierung der LeptonenmassenGreulach, Martin. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2000--Kaiserslautern.
|
18 |
Infinite-dimensional lie theory for gauge groupsWockel, Christoph. Unknown Date (has links)
Techn. University, Diss., 2006--Darmstadt.
|
19 |
Vector Boson Scattering and Electroweak Production of Two Like-Charge W Bosons and Two Jets at the Current and Future ATLAS DetectorSchnoor, Ulrike 22 May 2015 (has links) (PDF)
The scattering of electroweak gauge bosons is closely connected to the electroweak gauge symmetry and its spontaneous breaking through the Brout-Englert-Higgs mechanism. Since it contains triple and quartic gauge boson vertices, the measurement of this scattering process allows to probe the self-interactions of weak bosons. The contribution of the Higgs boson to the weak boson scattering amplitude ensures unitarity of the scattering matrix. Therefore, the scattering of massive electroweak gauge bosons is sensitive to deviations from the Standard Model prescription of the electroweak interaction and of the properties of the Higgs boson.
At the Large Hadron Collider (LHC), the scattering of massive electroweak gauge bosons is accessible through the measurement of purely electroweak production of two jets and two gauge bosons. No such process has been observed before. Being the channel with the least amount of background from QCD-mediated production of the same final state, the most promising channel for the first measurement of a process containing massive electroweak gauge boson scattering is the one with two like-charge W bosons and two jets in the final state. This thesis presents the first measurement of electroweak production of two jets and two identically charged W bosons, which yields the first observation of a process with contributions from quartic gauge interactions of massive electroweak gauge bosons.
An overview of the most important issues in Monte Carlo simulation of vector boson scattering processes with current Monte Carlo generators is given in this work. The measurement of the final state of two jets and two leptonically decaying same-charge W bosons is conducted based on proton-proton collision data with a center-of-mass energy of √s = 8 TeV, taken in 2012 with the ATLAS experiment at the LHC. The cross section of electroweak production of two jets and two like-charge W bosons is measured with a significance of 3.6 standard deviations to be σ(W± W±jj−EW[fiducial]) = 1.3 ± 0.4(stat.) ± 0.2(syst.) fb in a fiducial phase space region selected to enhance the contribution from W W scattering. The measurement is compatible with the Standard Model prediction of σ(W±W± jj−EW[fiducial]) = 0.95 ± 0.06 fb. Based on this measurement, limits on anomalous quartic gauge couplings are derived. The effect of anomalous quartic gauge couplings is simulated within the framework of an effective chiral Lagrangian unitarized with the K-matrix method. The limits for the anomalous coupling parameters α4 and α5 are found to be −0.14 < α4 < 0.16 and −0.23 < α5 < 0.24 at 95 % confidence level.
Furthermore, the prospects for the measurement of the electroweak production of two same-charge W bosons and two jets within the Standard Model and with additional doubly charged resonances after the upgrade of the ATLAS detector and the LHC are investigated. For a high-luminosity LHC with a center-of-mass energy of √s = 14 TeV, the significance of the measurement with an integrated luminosity of 3000 fb^−1 is estimated to be 18.7 standard deviations. It can be improved by 30 % by extending the inner tracking detector of the atlas experiment up to an absolute pseudorapidity of |η| = 4.0.
|
20 |
On the Riemannian geometry of Seiberg-Witten moduli spacesBecker, Christian January 2005 (has links)
<p>In this thesis, we give two constructions for Riemannian metrics on
Seiberg-Witten moduli spaces. Both these constructions are
naturally induced from the L2-metric on the configuration space.
The construction of the so called quotient L2-metric is very similar
to the one construction of an L2-metric on Yang-Mills moduli spaces as
given by Groisser and Parker. To construct a Riemannian metric on
the total space of the Seiberg-Witten bundle in a similar way, we define the reduced gauge group as a subgroup of the gauge group. We show, that the quotient of the premoduli space by the reduced gauge group is
isomorphic as a U(1)-bundle to the quotient of the premoduli space by the based gauge group. The total space of this new representation of the Seiberg-Witten bundle carries a natural quotient L2-metric, and the bundle projection is a
Riemannian submersion with respect to these metrics. We compute explicit formulae for the sectional curvature of the moduli space in terms of Green operators of the elliptic complex associated with a monopole. Further, we construct a Riemannian metric on the cobordism between moduli spaces for
different perturbations. The second construction of a Riemannian metric on
the moduli space uses a canonical global gauge fixing, which represents the total space of the Seiberg-Witten bundle as a finite dimensional submanifold of the configuration space.</p>
<p>We consider the Seiberg-Witten moduli space on a simply
connected Käuhler surface. We show that the moduli space
(when nonempty) is a complex projective space, if the perturbation
does not admit reducible monpoles, and that the moduli space consists of a single point otherwise. The Seiberg-Witten bundle can then be identified with the Hopf fibration.
On the complex projective plane with a special Spin-C structure, our Riemannian metrics on the
moduli space are Fubini-Study metrics. Correspondingly, the metrics on
the total space of the Seiberg-Witten bundle are Berger
metrics. We show that the diameter of the moduli space shrinks to 0 when the perturbation approaches the wall of reducible perturbations.
Finally we show, that the quotient L2-metric on the Seiberg-Witten moduli space
on a Kähler surface is a Kähler metric.</p> / <p>In dieser Dissertationsschrift geben wir zwei Konstruktionen Riemannscher Metriken auf Seiberg-Witten-Modulräumen an. Beide Metriken werden in natürlicher Weise durch die L2-Metrik des Konfiguartionsraumes induziert. Die Konstruktion der sogenannten Quotienten-L2-Metrik entspricht der durch Groisser und Parker angegebenen Konstruktion einer L2-Metrik auf Yang-Mills-Modulräumen. Zur Konstruktion einer Quotienten-Metrik auf dem Totalraum des Seiberg-Witten-Bündels führen wir die sogenannte reduzierte Eichgruppe ein. Wir zeigen, dass der Quotient des Prämodulraumes nach der reduzierten Eichgruppe als U(1)-Bündel isomorph ist zu dem Quotienten nach der basierten Eichgruppe. Dadurch trägt der Totalraum des Seiberg-Witten Bündels eine natürliche Quotienten-L2-Metrik, bzgl. derer die Bündelprojektion eine Riemannsche Submersion ist. Wir berechnen explizite Formeln für die Schnittrümmung des Modulraumes in Ausdrücken der Green-Operatoren des zu einem Monopol gehörigen elliptischen Komplexes. Ferner konstruieren wir eine Riemannsche Metrik auf dem Kobordismus zwischen Modulräumen zu verschiedenen Störungen. Die zweite Konstruktion einer Riemannschen Metrik auf Seiberg-Witten-Modulräumen benutzt eine kanonische globale Eichfixierung, vermöge derer der Totalraum des Seiberg-Witten-Bündels als endlich-dimensionale Untermannigfaltigkeit des Konfigurationsraumes dargestellt werden kann.</p>
<p>Wir betrachten speziell die Seiberg-Witten-Modulräume auf einfach zusammenhängenden Kähler-Mannigfaltigkeiten. Wir zeigen, dass der
Seiberg-Witten-Modulraum (falls nicht-leer) im irreduziblen Fall ein komplex projektiver Raum its und im reduziblen Fall aus einem einzelnen Punkt besteht.
Das Seiberg-Witten-Bündel läßt sich mit der Hopf-Faserung identifizieren. Die L2-Metrik des Modulraumes auf der komplex projektiven Fläche CP2 (mit einer speziellen Spin-C-Struktur) ist die Fubini-Study-Metrik; entsprechend sind die Metriken auf dem Totalraum Berger-Metriken. Wir zeigen, dass der Durchmesser des Modulraumes gegen 0 konvergiert, wenn die Störung sich dem reduziblen Fall nähert. Schließlich zeigen wir, dass die Quotienten-L2-Metrik auf dem Seiberg-Witten-Modulraum einer Kählerfläche eine Kähler-Metrik ist.</p>
|
Page generated in 0.0512 seconds