• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computing accurate solutions to the Kohn-Sham problem quickly in real space

Schofield, Grady Lynn 18 September 2014 (has links)
Matter on a length scale comparable to that of a chemical bond is governed by the theory of quantum mechanics, but quantum mechanics is a many body theory, hence for the sake of chemistry or solid state physics, finding solutions to the governing equation, Schrodinger's equation, is hopeless for all but the smallest of systems. As the number of electrons increases, the complexity of solving the equations grows rapidly without bound. One way to make progress is to treat the electrons in a system as independent particles and to attempt to capture the many-body effects in a functional of the electrons' density distribution. When this approximation is made, the resulting equation is called the Kohn-Sham equation, and instead of requiring solving for one function of many variables, it requires solving for many functions of the three spatial variables. This problem turns out to be easier than the many body problem, but it still scales cubically in the number of electrons. In this work we will explore ways of obtaining the solutions to the Kohn-Sham equation in the framework of real-space pseudopotential density functional theory. The Kohn-Sham equation itself is an eigenvalue problem, just as Schrodinger's equation. For each electron in the system, there is a corresponding eigenvector. So the task of solving the equation is to compute many eigenpairs of a large Hermitian matrix. In order to mitigate the problem of cubic scaling, we develop an algorithm to slice the spectrum into disjoint segments. This allows a smaller eigenproblem to be solved in each segment where a post-processing step combines the results from each segment and prevents double counting of the eigenpairs. The efficacy of this method depends on the use of high order polynomial filters that enhance only a segment of the spectrum. The order of the filter is the number of matrix-vector multiplication operations that must be done with the Hamiltonian. Therefore the performance of these operations is critical. We develop a scalable algorithm for computing these multiplications and introduce a new density functional theory code implementing the algorithm. / text
2

Computing Eigenmodes of Elliptic Operators on Manifolds Using Radial Basis Functions

Delengov, Vladimir 01 January 2018 (has links)
In this work, a numerical approach based on meshless methods is proposed to obtain eigenmodes of Laplace-Beltrami operator on manifolds, and its performance is compared against existing alternative methods. Radial Basis Function (RBF)-based methods allow one to obtain interpolation and differentiation matrices easily by using scattered data points. We derive expressions for such matrices for the Laplace-Beltrami operator via so-called Reilly’s formulas and use them to solve the respective eigenvalue problem. Numerical studies of proposed methods are performed in order to demonstrate convergence on simple examples of one-dimensional curves and two-dimensional surfaces.
3

Asymptotic study of covariance operator of fractional processes : analytic approach with applications / Études asymptotiques de l’opérateur de covariance pour les processus fractionnaires : approche analytique avec applications

Marushkevych, Dmytro 22 May 2019 (has links)
Les problèmes aux valeurs et fonctions propres surviennent fréquemment dans la théorie et dans les applications des processus stochastiques. Cependant quelques-uns seulement admettent une solution explicite; la résolution est alors généralement obtenue par la théorie généralisée de Sturm-Liouville pour les opérateurs différentiels. Les problèmes plus généraux ne peuvent pas être résolus sous une forme fermée et le sujet de cette thèse est l'analyse spectrale asymptotique des processus gaussiens fractionnaires et ses applications. Dans la première partie, nous développons une méthodologie pour l'analyse spectrale des opérateurs de covariance de type fractionnaire, correspondant à une famille importante de processus, incluant le processus fractionnaire d'Ornstein-Uhlenbeck, le mouvement brownien fractionnaire intégré et le mouvement brownien fractionnaire mixte. Nous obtenons des approximations asymptotiques du second ordre pour les valeurs propres et les fonctions propres. Au chapitre 2, nous considérons le problème aux valeurs et fonctions propres pour l'opérateur de covariance des ponts gaussiens. Nous montrons comment l'asymptotique spectrale d'un pont peut être dérivée de celle de son processus de base, en prenant comme exemple le cas du pont brownien fractionnaire. Dans la dernière partie, nous considérons trois applications représentatives de la théorie développée: le problème de filtrage des signaux gaussiens fractionnaires dans le bruit blanc, le problème de grande déviation pour le processus d'Ornstein-Uhlenbeck gouverné par un mouvement brownien fractionnaire mixte et probabilités des petites boules pour les processus gaussiens fractionnaires. / Eigenproblems frequently arise in theory and applications of stochastic processes, but only a few have explicit solutions. Those which do are usually solved by reduction to the generalized Sturm-Liouville theory for differential operators.The more general eigenproblems are not solvable in closed form and the subject of this thesis is the asymptotic spectral analysis of the fractional Gaussian processes and its applications.In the first part, we develop methodology for the spectral analysis of the fractional type covariance operators, corresponding to an important family of processes that includes the fractional Ornstein-Uhlenbeck process, the integrated fractional Brownian motion and the mixed fractional Brownian motion. We obtain accurate second order asymptotic approximations for both the eigenvalues and the eigenfunctions. In Chapter 2 we consider the covariance eigenproblem for Gaussian bridges. We show how the spectral asymptotics of a bridge can bederived from that of its base process, considering, as an example, the case of the fractional Brownian bridge. In the final part we consider three representative applications of the developed theory: filtering problem of fractional Gaussian signals in white noise, large deviation properties of the maximum likelihood drift parameter estimator for the Ornstein-Uhlenbeck process driven by mixed fractional Brownian motion and small ball probabilities for the fractional Gaussian processes.
4

Calcul des vibrations non linéaires d’une structure composite en contact avec un fluide par la Méthode Asymptotique Numérique : application à la vibroacoustique / Calculation of non-linear vibrations of a composite structure in contact with a fluid by the Asymptotic Numerical Method : Application to vibroacoustics

Claude, Bertille 11 December 2018 (has links)
La maîtrise du bruit et des vibrations est un objectif fréquemment rencontré dans le domaine industriel. Qu’il s’agisse de questions de confort ou de sécurité, les domaines d’applications sont nombreux et variés : transport, BTP, ingénierie civile et militaire… Dans cette thèse, un problème de vibroacoustique interne avec couplage fluide-structure est étudié. Il s’agit d’une cavité remplie de fluide dont les parois sont constituées d’une structure sandwich viscoélastique. Les difficultés numériques associées à ce modèle portent sur la non linéarité du matériau et sur les propriétés des opérateurs matriciels manipulés (conditionnement, non symétrie). Le calcul des vibrations du système dissipatif couplé nécessite une valeur initiale, choisie comme la solution du problème conservatif. Cette solution n’étant pas aisée à déterminer, deux solveurs aux valeurs propres basés sur la Méthode Asymptotique Numérique (MAN) sont proposés pour résoudre le problème des vibrations libres du système conservatif. Associant des techniques de perturbation d'ordre élevé et de continuation, la MAN permet de transformer le problème non linéaire de départ en une suite de problèmes linéaires, plus simples à résoudre. Les solutions obtenues sont ensuite utilisées comme point initial pour déterminer la réponse libre du système dissipatif. Un solveur de Newton d’ordre élevé, basé sur les techniques d’homotopie et de perturbation est développé pour résoudre ce problème. Enfin, le régime forcé est étudié. Pour toutes les configurations envisagées, les résultats obtenus mettent en évidence des performances numériques améliorées par rapport aux méthodes classiquement utilisées (Arpack, Newton…). / Noises and vibrations control is a common objective in the industrial field. Whether it is a question of comfort or safety, the fields of application are numerous and varied: transport, building, civil and military engineering… In this thesis, a vibroacoustics interior problem with fluid-structure coupling is studied. A cavity filled of fluid whose walls are made of a sandwich viscoelastic structure is considered. The numerical difficulties associated with this model relate to the non-linearity of the viscoelastic material and the properties of the matrix operators used (conditioning, non-symmetry). The calculation of the vibrations of the coupled dissipative system requires an initial value, chosen as the solution to the conservative problem. Since this solution is difficult to determine, two eigenvalue algorithms based on the Asymptotic Numerical Method (ANM) are proposed to solve the problem of free vibrations of the conservative system. Combining high order perturbation and continuation techniques, ANM transforms the initial non-linear problem into a set of linear problems that are easier to solve. The solutions obtained are then used as the initial point to determine the free vibrations of the dissipative problem. A high order Newton solver, based on homotopy and perturbation techniques, is developed to solve this problem. Finally, the forced harmonic response of the damped system is computed. For all the configurations tested, the results obtained show improved numerical performance compared to the methods conventionally used (Arpack solver, Newton algorithm…).
5

Computing the Eigenproblem of a Real Orthogonal Matrix

鄭月雯, Cheng, Yueh-Wen Unknown Date (has links)
設H是一個實數正交的矩陣,我們要求它的特徵值以及特徵向量。H可以表示成Schur參數的形式。根據Ammar,Gragg及Reichel的論文,我們把H的特徵問題轉換成兩個元素由Schur參數決定的二對角矩陣的奇異值(奇異向量)的問題。我們用這個方法寫成程式並且與CLAPACK的程式比較準確度及速度。最後列出一些數值的結果作為結論。 / Let H be an orthogonal Hessenberg matrix whose eigenvalues, and possibly eigenvectors, are to be determined. Then H can be represented in Schur parametric form [2]. Following Ammar, Gragg, and Reichel's paper [1], we compute the eigenproblem of H by finding the singular values (and vectors) of two bidiagonal matrices whose elements are explicitly known functions of the Schur parameters. We compare the accuracy and speed of our programs using the method described aboved with those in CLAPACK. Numerical results conclude this thesis.
6

Parametric stability analyses for fluid-loaded thin membranes

Zhou, Yang January 2015 (has links)
Membrane structures are commonly used in many elds. The studies of thesestructures are of increasing interest. The two projects focus on the evaluations ofequilibrium states for uid-pressurized membranes under dierent loading conditions,and the corresponding instability behavior.The rst part of the current work discusses the instability behavior of a thin,planar, circular and initially horizontal membrane subjected to downwards or upwards uid pressure. The membrane structures exhibit large deformations under uid pressure. Various instability behaviors have been observed for dierent loadingparameters. Limit and bifurcation points have been detected for dierent loadingconditions. Dierent loading parameters have been used to interpret the instabilitybehavior. The eects on instability of parameters, the initial states of the membrane,and the chosen mesh have been discussed.The second part of the current work discusses instability behavior of a thin,spherical and closed membrane containing gas and uid placed on a horizontal rigidand non-friction plane. A multi-parametric loading has been described. By addingthe practically relevant controlling equations, the complex equilibrium paths werefollowed using the generalized path following algorithm, and the stability conclusionswere made dierently, according to the considered load parameters and theconstraints. A generalized eigenvalue analysis was used to evaluate the stabilitybehavior including the constraint eects. Fold line evaluations were performed toanalyze the parametric dependence of the instability behavior. A solution surfaceapproach was used to visualize the mechanical response under this multi-parametricsetting. / <p>QC 20151029</p>

Page generated in 0.0512 seconds