Spelling suggestions: "subject:"rejection""
11 |
Metabolic abnormalities in patients with chronic heart failure : assessment of cytokines, endotoxin, pro-oxidant substrates and exercise trainingNiebauer, Josef January 1999 (has links)
No description available.
|
12 |
3-D Modeling of Coronal Mass Ejections with STEREO/SECCHI DataBosman, Eckhard 19 January 2017 (has links)
No description available.
|
13 |
Spin Stability of Sounding Rocket Secondary Payloads Following High Velocity EjectionsNelson, Weston McClain 01 May 2013 (has links)
The Auroral Spatial Structures Probe (ASSP) mission is a sounding rocket mission studying solar energy input to space weather. ASSP requires the high velocity ejection (up to 50 m/s) of 6 secondary payloads, spin stabilized perpendicular to the ejection velocity. The proposed scientific instrumentation depends on a high degree of spin stability, requiring a maximum coning angle of less than 5º. It also requires that the spin axis be aligned within 25º of the local magnetic field lines. The maximum velocities of current ejection methods are typically less than 10m/s, and often produce coning angles in excess of 20º. Because of this they do not meet the ASSP mission requirements. To meet these requirements a new ejection method is being developed by NASA Wallops Flight Facility. Success of the technique in meeting coning angle and B-field alignment requirements is evaluated herein by modeling secondary payload dynamic behavior using a 6-DOF dynamic simulation employing state space integration written in MATLAB. Simulation results showed that secondary payload mass balancing is the most important factor in meeting stability requirements. Secondary mass payload properties will be measured using an inverted torsion pendulum. If moment of inertia measurement errors can be reduced to 0.5%, it is possible to achieve mean coning and B-field alignment angles of 2.16º and 2.71º, respectively.
|
14 |
A Finite Element Model for Ejection of Green Parts After PM CompactionHabib, FOUAD 02 October 2008 (has links)
The present study describes the development of an FE model of tooling during production of a transmission gear. Results of the simulation at the puck/die interface during ejection examine the behavior of friction. Machine component deflections under pressure and areas of wear/binding are also predicted. The tooling was developed and modeled in Abaqus, an FE pre- and post-processor. A metal PM (Powder Metallurgy) puck is simulated from the point at the end of compaction, and then at several positions during ejection. A test setup was designed and built. The apparatus will be used to create iron powder compacts, and experimental results will be used to evaluate future models. Experiments with the new design will enable future studies of friction at the puck/die interface. The current design is for a simple puck and an increase in part geometry complexity is proposed with preliminary design requirements. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2008-10-02 13:53:50.789
|
15 |
Mise en suspension par laser de poussières générées lors du fonctionnement des réacteurs de fusion / Laser-induced mobilization of dust produced during fusion reactors operationVatry, Aude 16 November 2010 (has links)
Lors du fonctionnement d’une machine de fusion, les interactions plasma-parois conduisent à des processus d’érosion des matériaux et à la production de particules. Ces poussières sont principalement composées de carbone et de tungstène. Pour des raisons de sureté et afin de garantir un fonctionnement optimum du réacteur, il est important de garder en quantité raisonnable les poussières dont la taille varie entre 10 nm et 100 $m. La mise en suspension de ces poussières est une étape préliminaire à leur récupération, et le laser est une technique prometteuse pour cette application. Afin d’optimiser le nettoyage, les mécanismes physiques à l’origine de l’éjection induite par laser de ces poussières ont été identifiés. Les agrégats sont directement ablatés par le laser et les gouttelettes métalliques sont éjectées intactes par une force électrostatique induite par les photoélectrons. Nous avons également caractérisé l’éjection des particules pour choisir un système de récupération adapté. / During tokamak operation, plasma-wall interactions lead to material erosion processand dusts production. These dusts are mainly composed by carbon and tungsten, with sizesranging from 10 nm to 100 $m. For safety reasons and to guarantee an optimum reactorfunctioning, the dusts have to be kept in reasonable quantity. The dusts mobilization is a firststep to collect them, and the laser is a promising technique for this application. To optimizethe cleaning, physical mechanisms responsible for dust ejection induced by laser have beenidentified. Some particles, such as aggregates, are directly ablated by the laser. The metaldroplets are ejected intact by an electrostatic force, induced by the photoelectrons. We alsocharacterized the particles ejection to choose an appropriate collection device.
|
16 |
Etude des cycles d'hystérésis dans les binaires X à trou noir : application à l'objet GX 339-4 / Hysteresis cycles in X-ray binariesMarcel, Grégoire 19 October 2018 (has links)
Les cycles d’hysteresis des binaires X lors de leurs sursauts restent inexpliqués a ce jour. Dans ce travail, nous avons développé les idées du paradigme propose par Ferreira et al. (2006), ou la matière dans le disque accrète de deux manières différentes. Dans le mode standard (SAD, Shakura et Sunyaev 1973), le couple turbulent transporte le moment cinétique radialement vers l’extérieur du disque. Dans le mode éjectant (JED, Ferreira et Pelletier 1995), le disque magnetise produit des jets qui emporte la matière, l’énergie et le moment angulaire verticalement. Dans ce cadre, la transition entre les deux modes est liée a la distribution de champ magnétique dans le disque, une inconnue. Pendant cette thèse, j’ai développé un code capable de résoudre a chaque rayon dans un disque l’équilibre thermique a deux températures pour de multiples jeu de paramètres. Ce code utilise Belm (Belmont et al. 2008 ; Belmont 2009) pour traiter le refroidissement radiatif et créer les spectres de manière auto-cohérente. Les processus de chauffage sont analytiques, ainsi que les processus d’advection, qui sont calcules de l’interieur vers l’exterieur.Grace a ce code, nous avons pu montrer que des solutions de JED reproduisaient très bien les états hard jusqu’à 0.5 luminosités d’Eddington (Marcel et al. 2018a). Il a aussi été démontré que le JED subit un cycle d’hysteresis. En revanche, la luminosité de ce cycle est bien trop faible et la présence inévitable de jets dans la configuration nous pousse a l’utilisation d’un SAD pour la reproduction d’états soft.Fort de ces résultats, j’ai adapte le code a la résolution de configuration de disque hybride, compose d’un JED interne et d’un SAD externe, séparé en un rayon de transition rJ. En jouant sur ce paramètre rJ et sur le taux d’accrétion mdot, nous avons pu montrer que les observations X de cycles typiques pouvaient être pavée. Après des calculs similaires a Heinz et Sunyaev (2003), nous pouvons estimer quel est le flux radio associe a chaque jeu de paramètres. Cela nous a permis de montrer 2 choses. (1) tous les flux radios sont reproductibles a l’aide d’un seul facteur de normalisation commun. (2) le flux radio et la forme du spectre en rayons X sont cohérents : les jeux de paramètres qui reproduisent le mieux chaque forme spectral sont associes aux bon flux radios. Afin d’illustrer ce résultat, 5 états canoniques de l’évolution de GX 339-4 ont ete reproduits : forme spectrale en X et flux radios (Marcel et al. 2018b). Pour finir, en utilisant une simple procédure d’ajustement sur la forme spectrale en X, le cycle de 2010-2011 de GX 339-4 a pu être reproduit. De manière bluffante, les évolutions de rJ et mdot semblent être en accord avec les prédictions théoriques (Esin et al. 1997). De plus, les estimations de flux radio étant cohérentes avec les observations, nous avons décidé de les ajouter directement dans la procédure d’ajustement. L’ajout de cette composante a permis une excellente reproduction simultanée de la radio et des spectres X de manière. C’est, a notre connaissance, la première fois que les phénomènes d’accrétion et d’éjection sont utilisés simultanément. Ces résultats, ainsi que les discussions et implications seront bientôt soumis. / The hysteresis behavior of X-ray binaries during their outbursts remains a mystery. In this work, we developed the paradigm proposed in Ferreira et al. (2006) where the disk material accretes in two possible, mutually exclusive, ways. In the standard accretion disk (SAD, Shakura et Sunyaev 1973) mode, the dominant local torque is due to MHD turbulence that transports radially the disk angular momentum. In the jet-emitting disk (JED, Ferreira et Pelletier 1995) mode, magnetically-driven jets carry away mass, energy and all the angular momentum from the disk. Within our framework, the transition from one mode to another is related to the magnetic field distribution, an unknown yet.In this thesis, I have developped a two-temperature plasma code able to compute the thermal balance at each radius for a large ensemble of disk parameters, as well as the self- consistent global emitted spectrum. The radiative cooling term and related spectrum (comptonized bremsstrahlung and synchrotron emission) are obtained using the Belm code (Belmont et al. 2008 ; Belmont 2009). Heating processes are analytical and due only to accretion, while advection is properly taken into account, carrying outside-in the memory of the outer thermal states.Using this code, we have shown that a JED extending along the entire disk nicely repro- duces hard states up to 0.5 Eddington luminosities (Marcel et al. 2018a). It was also shown that JEDs produce a natural hysteresis cycle. However, the global luminosity of the cycle is insufficient and the inevitable presence of jets in JEDs advocates for an inner SAD configuration in soft states.Based on these results, the code was enhanced to solve hybrid configurations with an internal JED and an external SAD, separated by a given transition radius rJ. Playing on both rJ and the accretion rate mdot, we have shown that X-ray observations of typical cycles can be completely covered. Using a simple synchrotron model similar to that of Heinz et Sunyaev (2003), the radio flux produced by the jets can be estimated, showing two important features. First, all radio observations can be covered by our model. Second, the radio flux and X- ray spectral coverages are consistents : parameter sets that reproduce best each spectral state also account for a consistent associated radio flux. For illustration, 5 canonical states from GX 339-4 have been reproduced in X-ray spectral shape and associated radio fluxes (Marcel et al. 2018b).Finaly, using a simple fitting procedure on X-ray spectral shape, the 2010-2011 cycle from GX 339-4 has been reproduced. Strikingly, the co-evolution of rJ and mdot seems to be in adequacy with initial theoretical expectations (Esin et al. 1997). Moreover, the estimated radio flux evolution being close to observations, we decided to use those within the fitting procedure. Adding radio fluxes constraints in the procedure allowed us to reproduce both the associated X-ray spectral shape and radio fluxes with excellent agreement. This is, to our knowledge, the first time that such an accretion-ejection cycle is reproduced. Those results, as well as discussions and implications will be soon submitted.
|
17 |
Biomechanics of the 50th Percentile Male Spine Under Vertical LoadingBendig, Alexander Patrick January 2020 (has links)
No description available.
|
18 |
Clinical Characteristics, Comorbidities and Prognosis in Patients With Heart Failure With Mid-Range Ejection FractionMurtaza, Ghulam, Paul, Timir K., Rahman, Zia Ur, Kelvas, Danielle, Lavine, Steven J. 01 June 2020 (has links)
Background: Patients with left ventricular ejection fractions between 40% and 49% either discovered de novo, having declined from ≥50%, or improved from <40% have been described as heart failure (HF) with mid-range ejection fraction (HFmrEF). Though clinical signs and symptoms are similar to other phenotypes, possible prognostic differences and therapeutic responses reinforce the need for further understanding of patients’ characteristics especially in a rural community based population. The purpose of this study is to evaluate the clinical characteristics, comorbidities and prognosis of a rural patient population with HFmrEF. Materials and Methods: We queried the electronic medical record from a community based university practice for all patients with a HF diagnosis. We included only those patients with >3 months follow-up and interpretable Doppler echocardiograms. We recorded demographic, Doppler-echo, and outcome variables (up to 2,083 days). Results: There were 633 HF patients: 42.4% with preserved ejection fraction (HFpEF, EF ≥50%), 36.4% with HFmrEF, and 21.0% with reduced ejection fraction (HFrEF, EF <40%). HFmrEF patients were older, had greater coronary disease prevalence, lower systolic blood pressure, elevated brain natriuretic peptide, lower hemoglobin, and higher creatinine than HFpEF. All-cause mortality was intermediate between HFrEF and HFpEF but was not significantly different. Landmark analysis revealed a trend toward greater second readmission in HFmrEF as compared to HFpEF (hazard ratio: 1.43 [0.96-2.14],P = 0.0767). Conclusions: Rural patients with HFmrEF without an ambulatory HF clinic represent a higher percentage of HF patients than previously reported with greater coronary disease prevalence with comparable readmission rates and nonsignificantly different all-cause mortality.
|
19 |
New methods of mass analysis with quadrupoles with added octopole fieldsMoradian, Annie 05 1900 (has links)
Mass selective axial ejection of ions and mass analysis with a stability island with linear quadrupoles with added octopole fields are described. With mass selective axial ejection, quadrupoles with 2.0% and 2.6% added octopole fields have been tested and compared to a conventional quadrupole. The effects of trapping ions at different q values,
excitation voltage, scan direction, balanced and unbalanced rf voltages on the rods, and dc applied between the rods have been investigated. The highest scan speeds and highest resolution are obtained with resonant excitation and ejection at high q (q = 0.8). With axial ejection, the quadrupole with a 2.0% added octopole field provides mass resolution and ejection efficiencies similar to a conventional rod set. Quadrupole, dipole and simultaneous dipole-dipole excitation between the x and y rod pairs were compared and
no advantage was found with quadrupole or dipole-dipole excitation. The effects of scan speed were investigated and a resolution at half height of about 1600 is possible at scan speeds up to 5000 Th/s.
Mass analysis using islands of stability was investigated with a quadrupole with2.0% added octopole field. The island of stability is formed with auxiliary excitation. The experiments confirm the predictions of the simulations. With the resolving dc applied to the quadrupole so that the Mathieu parameter a>0, conventional mass analysis with applied rf and dc and no auxiliary excitation is possible. In this case use of an island of stability yields similar peak shape and resolution. However with the polarity of the resolving dc reversed so that a<0, only very low resolution can be obtained; the added octopole prevents conventional mass analysis. By using a stability island when a<0, the resolution is substantially improved.
|
20 |
Structure of turbulence in the marine atmospheric surface layerBoppe, Ravi Shankar 02 March 2006 (has links)
Turbulence research in the laboratory has confirmed the existence of quasi-coherent structures amidst the chaos of a turbulent boundary layer. It has been observed that a quasi-periodic phenomena called “bursting” accounts for a major contribution to the turbulent Reynolds stress and the production of turbulent kinetic energy. Bursting is the term used for a sequence of events, where a low-speed streak of fluid from the near wall region lifts away from the wall, slowly at first, and then rapidly moves away from the wall as it convects downstream where it becomes unstable and breaks up violently upon interaction with the outer flow. This ejection of low speed fluid into the mean flow is responsible for locally high values of turbulent kinetic energy. Although a great deal is known about these structures in laboratory flows, little has been done to investigate if such structures are universal in turbulent flows, i.e., their existence in large Reynolds number flows such as the turbulent air flow over the ocean. It would seem, intuitively, that such structures, if present in the marine atmospheric boundary layer, would play a major role in the transfer of momentum, mass and heat across the air-sea interface. It is speculated that these motions may also be associated with large scale organized motions in wall bounded turbulent shear flows. The effort aimed at elucidating the physics underlying such structures would be invaluable in contributing to our understanding of the air-sea flux mechanism.
In this dissertation, standard ejection detection schemes like the quadrant, the VITA and the modified u-level techniques have been applied to turbulent wind data measured over the ocean to confirm the existence of burst like structures. The proportions of contributions to the Reynolds stress from the four quadrants of the u’w’ plane are in close agreement with the corresponding contributions for a laboratory flow. Ejection detection followed by the grouping of ejections into bursts yielded a mean burst period of 47 s, at a height of 8.2 m above the water surface, where the mean wind velocity was 6.74 m/s. This burst period corresponds well with the peaks obtained from the autocorrelation of the streamwise velocity signal and the first moment of the stress spectrum, confirming the quasi-periodic nature of this phenomena. Furthermore, phase averages of these events show a structure which is similar to the structure of events detected in laboratory flows.
The ejection periods are seen to decrease with increasing wind speed. The burst periods decrease at first with increasing wind speed and then appear to attain a constant value after a wind speed of 6-7 m/s. This has been attributed to the breakdown of the grouping algorithm at higher wind speeds. Ejection and burst frequencies exhibit no discernible dependence on the surface wave field.
Ejection and sweep motions have been studied at various length scales. The original velocity signal is bandpass filtered for various frequency bands. For each band, the percentage contributions to the Reynolds stress from the quadrants of the u'w’ plane are close to the corresponding quadrant contributions of the other bands. This indicates similar turbulence structure at different scales. The velocity signals for each band have been normalized by their root mean square (RMS) value. Visualizing the signals on nondimensional time shows the signals from each band to be very similar. These results can also be interpreted as evidence for the ejection and sweep motions existing simultaneously at different scales, indicating the fractal nature of these events.
Large scale motions, which appear to be associated with ejection and sweep motions, have been identified in the marine atmospheric surface layer using velocity probe measurements at multiple heights. Visualizing these velocity signals suggests that the organized features extend across the depth of the surface layer. Converting the temporal signals to spatial fluctuations suggests that these structures are inclined at an angle while convecting downstream. The inclination angle near the surface (z < 18 m) is approximately 15° and it increases with increasing height to about 45° when z = 45 m. The spatial velocity fluctuations also indicate that these organized features may be large transverse vortical arches. / Ph. D.
|
Page generated in 0.0966 seconds