21 |
Ensemble Classifier Design and Performance Evaluation for Intrusion Detection Using UNSW-NB15 DatasetZoghi, Zeinab 30 November 2020 (has links)
No description available.
|
22 |
Multivariate Analysis of Korean Pop Music Audio FeaturesSolomon, Mary Joanna 20 May 2021 (has links)
No description available.
|
23 |
Improving Knowledge of Truck Fuel Consumption Using Data AnalysisJohnsen, Sofia, Felldin, Sarah January 2016 (has links)
The large potential of big data and how it has brought value into various industries have been established in research. Since big data has such large potential if handled and analyzed in the right way, revealing information to support decision making in an organization, this thesis is conducted as a case study at an automotive manufacturer with access to large amounts of customer usage data of their vehicles. The reason for performing an analysis of this kind of data is based on the cornerstones of Total Quality Management with the end objective of increasing customer satisfaction of the concerned products or services. The case study includes a data analysis exploring how and if patterns about what affects fuel consumption can be revealed from aggregated customer usage data of trucks linked to truck applications. Based on the case study, conclusions are drawn about how a company can use this type of analysis as well as how to handle the data in order to turn it into business value. The data analysis reveals properties describing truck usage using Factor Analysis and Principal Component Analysis. Especially one property is concluded to be important as it appears in the result of both techniques. Based on these properties the trucks are clustered using k-means and Hierarchical Clustering which shows groups of trucks where the importance of the properties varies. Due to the homogeneity and complexity of the chosen data, the clusters of trucks cannot be linked to truck applications. This would require data that is more easily interpretable. Finally, the importance for fuel consumption in the clusters is explored using model estimation. A comparison of Principal Component Regression (PCR) and the two regularization techniques Lasso and Elastic Net is made. PCR results in poor models difficult to evaluate. The two regularization techniques however outperform PCR, both giving a higher and very similar explained variance. The three techniques do not show obvious similarities in the models and no conclusions can therefore be drawn concerning what is important for fuel consumption. During the data analysis many problems with the data are discovered, which are linked to managerial and technical issues of big data. This leads to for example that some of the parameters interesting for the analysis cannot be used and this is likely to have an impact on the inability to get unanimous results in the model estimations. It is also concluded that the data was not originally intended for this type of analysis of large populations, but rather for testing and engineering purposes. Nevertheless, this type of data still contains valuable information and can be used if managed in the right way. From the case study it can be concluded that in order to use the data for more advanced analysis a big-data plan is needed at a strategic level in the organization. The plan summarizes the suggested solution for the managerial issues of the big data for the organization. This plan describes how to handle the data, how the analytic models revealing the information should be designed and the tools and organizational capabilities needed to support the people using the information.
|
24 |
Metody pro predikci s vysokodimenzionálními daty genových expresí / Methods for class prediction with high-dimensional gene expression dataŠilhavá, Jana Unknown Date (has links)
Dizertační práce se zabývá predikcí vysokodimenzionálních dat genových expresí. Množství dostupných genomických dat významně vzrostlo v průběhu posledního desetiletí. Kombinování dat genových expresí s dalšími daty nachází uplatnění v mnoha oblastech. Například v klinickém řízení rakoviny (clinical cancer management) může přispět k přesnějšímu určení prognózy nemocí. Hlavní část této dizertační práce je zaměřena na kombinování dat genových expresí a klinických dat. Používáme logistické regresní modely vytvořené prostřednictvím různých regularizačních technik. Generalizované lineární modely umožňují kombinování modelů s různou strukturou dat. V dizertační práci je ukázáno, že kombinování modelu dat genových expresí a klinických dat může vést ke zpřesnění výsledku predikce oproti vytvoření modelu pouze z dat genových expresí nebo klinických dat. Navrhované postupy přitom nejsou výpočetně náročné. Testování je provedeno nejprve se simulovanými datovými sadami v různých nastaveních a následně s~reálnými srovnávacími daty. Také se zde zabýváme určením přídavné hodnoty microarray dat. Dizertační práce obsahuje porovnání příznaků vybraných pomocí klasifikátoru genových expresí na pěti různých sadách dat týkajících se rakoviny prsu. Navrhujeme také postup výběru příznaků, který kombinuje data genových expresí a znalosti z genových ontologií.
|
25 |
Auto-Tuning Apache Spark Parameters for Processing Large Datasets / Auto-Optimering av Apache Spark-parametrar för bearbetning av stora datamängderZhou, Shidi January 2023 (has links)
Apache Spark is a popular open-source distributed processing framework that enables efficient processing of large amounts of data. Apache Spark has a large number of configuration parameters that are strongly related to performance. Selecting an optimal configuration for Apache Spark application deployed in a cloud environment is a complex task. Making a poor choice may not only result in poor performance but also increases costs. Manually adjusting the Apache Spark configuration parameters can take a lot of time and may not lead to the best outcomes, particularly in a cloud environment where computing resources are allocated dynamically, and workloads can fluctuate significantly. The focus of this thesis project is the development of an auto-tuning approach for Apache Spark configuration parameters. Four machine learning models are formulated and evaluated to predict Apache Spark’s performance. Additionally, two models for Apache Spark configuration parameter search are created and evaluated to identify the most suitable parameters, resulting in the shortest execution time. The obtained results demonstrates that with the developed auto-tuning approach and adjusting Apache Spark configuration parameters, Apache Spark applications can achieve a shorter execution time than when using the default parameters. The developed auto-tuning approach gives an improved cluster utilization and shorter job execution time, with an average performance improvement of 49.98%, 53.84%, and 64.16% for the three different types of Apache Spark applications benchmarked. / Apache Spark är en populär öppen källkodslösning för distribuerad databehandling som möjliggör effektiv bearbetning av stora mängder data. Apache Spark har ett stort antal konfigurationsparametrar som starkt påverkar prestandan. Att välja en optimal konfiguration för en Apache Spark-applikation som distribueras i en molnmiljö är en komplex uppgift. Ett dåligt val kan inte bara leda till dålig prestanda utan också ökade kostnader. Manuell anpassning av Apache Spark-konfigurationsparametrar kan ta mycket tid och leda till suboptimala resultat, särskilt i en molnmiljö där beräkningsresurser tilldelas dynamiskt och arbetsbelastningen kan variera avsevärt. Fokus för detta examensprojekt är att utveckla en automatisk optimeringsmetod för konfigurationsparametrarna i Apache Spark. Fyra maskininlärningsmodeller formuleras och utvärderas för att förutsäga Apache Sparks prestanda. Dessutom skapas och utvärderas två modeller för att söka efter de mest lämpliga konfigurationsparametrarna för Apache Spark, vilket resulterar i kortast möjliga exekveringstid. De erhållna resultaten visar att den utvecklade automatiska optimeringsmetoden, med anpassning av Apache Sparks konfigurationsparameterar, bidrar till att Apache Spark-applikationer kan uppnå kortare exekveringstider än vid användning av standard-parametrar. Den utvecklade metoden för automatisk optimering bidrar till en förbättrad användning av klustret och kortare exekveringstider, med en genomsnittlig prestandaförbättring på 49,98%, 53,84% och 64,16% för de tre olika typerna av Apache Spark-applikationer som testades.
|
Page generated in 0.0748 seconds