• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] NONLINEAR VIBRATIONS AND INSTABILITY OF SHALLOW ARCHES WITH SPRING SUPPORTS / [pt] VIBRAÇÕES NÃO LINEARES E INSTABILIDADE DE ARCOS ESBELTOS ABATIDOS COM APOIOS ELÁSTICOS

KENNY FERNANDO CONTO QUISPE 20 May 2015 (has links)
[pt] Arcos abatidos são usados com frequência para vencer grandes vãos. Exemplos incluem pontes em arco e coberturas de grandes espaços como galpões industriais e estádios. Em muitos casos empregam-se arcos atirantados ou apoiados em estruturas flexíveis, fazendo com que os apoios se movam quando o arco é carregado. Isto aumenta a flexibilidade do sistema e a probabilidade de perda de estabilidade na presença de cargas estáticas e dinâmicas. Em muitos casos estas estruturas podem ser modeladas como arcos com apoios elásticos. No presente trabalho resolve-se o problema de estabilidade estática de forma analítica e através de uma aproximação usando o método de Ritz, servindo a solução analítica para aferir a precisão do modelo numérico. A seguir, com base neste estudo, desenvolve-se, usando o método de Ritz, a formulação para análise das vibrações não lineares do arco com apoios elásticos, assunto inédito na literatura. Os resultados mostram a grande influência dos apoios nas vibrações não lineares e na estabilidade do arco sob cargas estáticas e dinâmicas. / [en] Shallow arches are often used to overcome large spans, for example, arch bridges or steel roofs to cover large spaces such as industrial sheds and stadiums. In many cases the arches are tied or are supported by a flexibility structure, causing that supports to move when the arch has been loaded. This increases the flexibility of the system and the probability of loss of stability in the presence of static and dynamic loads. In many cases, these structures can be modeled as arches with elastic supports. In the present work the static stability has been solved analytically and through the Ritz method, serving the analytical solution to assess the accuracy of the numerical model. Then, based on this study, the analysis of nonlinear vibrations of shallow arches with elastic supports is developed, using the Ritz method, a subject not yet studied in the literature. The results show the noticeable influence of the supports on the nonlinear vibration and stability of shallow arches under static and dynamic loads.
2

[en] DYNAMICS OF AN HORIZONTAL ROTOR ON ELASTOMERIC BEARING SUPPORTS / [pt] DINÂMICA DE UM ROTOR HORIZONTAL EM APOIOS ELÁSTICOS

RAMIRO GERMAN DIAZ CHAVEZ 29 December 2003 (has links)
[pt] Dentro do campo dos controladores passivos, um dos dispositivos usados pelas suas propriedades de amortecimento são os Apoios Elásticos, que constituem uma solução econômica e efetiva na supressão ou atenuação das vibrações em sistemas dinâmicos com problemas de ressonância ou instabilidade, freqüentemente pela falta de amortecimento suficiente. Este trabalho envolve o estudo de um rotor horizontal com apoios elásticos (silicone), adaptado a partir de um rotor existente, o estudo de diversos efeitos sobre a sua operação, a medição de seu movimento, a identificação dos parâmetros do problema, a medição e validação a partir de resultados simulados em um modelo numérico. Os fenômenos incluídos no estudo são o efeito giroscópio (rotor descentrado com respeito do vão), desbalanceamento do rotor e empenamento do eixo. Neste trabalho os parâmetros do sistema foram determinados usando técnicas de identificação, análise modal e otimização não linear devido à anisotropia do sistema. / [en] Viscoelastic Passive Controllers are an important field of technological research due to the development of new materials and design techniques. Damping properties allow an easy retrofit of existing machines with excessive vibration problems, developing Elastomeric Bearing Supports. They are an economic and effective solution in the suppression or attenuation of vibrations in dynamic systems suffering from instability or resonance problems, which often lack of sufficient damping. This work involves the study of an horizontal rotor with elastomeric bearing supports, adapted of another one, the study of several effects on his operation, the measurement of his motion, the identification of the problems parameters, the measurement and validation from the simulated results in a numeric model. Phenomena included in the study are the gyroscopic effect (rotor out of the middle), rotor unbalance and shaft bow. In this work the systems parameters were determined using identification, modal analysis and nonlinear optimization techniques due to the anisotropy of the system.
3

Base Isolation of a Chilean Masonry House: A Comparative Study

Husfeld, Rachel L. 16 January 2010 (has links)
The objective of this study is to reduce the interstory drifts, floor accelerations, and shear forces experienced by masonry houses subject to seismic excitation. Ambient vibration testing was performed on a case study structure in Maip�, Chile, to identify characteristics of the system. Upon creating a multiple degree-of-freedom (MDOF) model of the structure, the effect of implementing several base isolation techniques is assessed. The isolation techniques analyzed include the use of friction pendulum systems (FPS), high-damping rubber bearings (HDRB), two hybrid systems involving HDRB and shape memory alloys (SMA), and precast-prestressed pile (PPP) isolators. The dynamic behavior of each device is numerically modeled using analytical formulations and experimental data through the means of fuzzy inference systems (FIS) and S-functions. A multiobjective genetic algorithm is utilized to optimize the parameters of the FPS and the PPP isolation systems, while a trial-and-error method is employed to optimize characteristic parameters of the other devices. Two cases are studied: one case involves using eight devices in each isolation system and optimizing the parameters of each device, resulting in different isolated periods for each system, while the other case involves using the number of devices and device parameters that result in a 1.0 sec fundamental period of vibration for each baseisolated structure. For both cases, the optimized devices are simulated in the numerical model of the case study structure, which is subjected to a suite of earthquake records. Numerical results for the devices studied indicate significant reductions in responses of the base-isolated structures in comparison with their counterparts in the fixed-base structure. Metrics monitored include base shear, structural shear, interstory drift, and floor acceleration. In particular, the PPP isolation system in the first case reduces the peak base shear, RMS floor acceleration, peak structural shear, peak interstory drift, and peak floor acceleration by at least 88, 87, 95, 95, and 94%, respectively, for all of the Chilean earthquakes considered. The PPP isolation system in the second case (yielding a 1.0 sec period) and the FPS isolation systems in both cases also significantly reduce the response of the base-isolated structure from that of the fixed-base structure.
4

A New Formulation For The Analysis Of Bonded Elastic Layers

Pinarbasi, Seval 01 April 2007 (has links) (PDF)
Elastic layers bonded to reinforcing sheets are widely used in many engineering applications, e.g., as elastic foundations to machinery, as seismic isolators to structures, etc. Because of its practical importance, the behavior of bonded elastic layers under some basic deformation modes (e.g., compression, bending and shear modes) has attracted the attention of many researchers. However, the analytical works available in literature involve, with the object of obtaining design formulas, many simplifying assumptions. In this dissertation, a new formulation is developed for the analysis of bonded elastic layers, which removes most of the assumptions used in the earlier formulations. Since the displacement boundary conditions are included in the formulation itself, there is no need to start the formulation with some assumptions on stress and/or displacement distributions or with some limitations on geometrical and/or material properties. For this reason, the solutions derived from this formulation are valid not only for &ldquo / thin&rdquo / layers of strictly/nearly incompressible materials but also for &ldquo / thick&rdquo / layers and/or compressible materials. The advanced solutions obtained within the framework of the new formulation are used to study the behavior of bonded elastic layers under basic deformation modes. The effects of three key parameters, shape factor, Poisson&rsquo / s ratio and reinforcement flexibility, on effective layer moduli, displacement/stress distributions, and location/magnitude of maximum stresses are investigated. It is shown that the stress assumptions of the &ldquo / pressure&rdquo / method are inconsistent with the results obtained for thick layers and/or compressible materials and/or flexible reinforcements, and that the assumption &ldquo / plane sections remain plane&rdquo / is not valid, in general.
5

Behavioral Study of Steel Laminated Elastomeric Bearings and Solution Spaces for Bearing Design Specifications

GC, Sandesh January 2020 (has links)
No description available.

Page generated in 0.1 seconds