Spelling suggestions: "subject:"electrical current""
351 |
Multiband Hybrid Internal Antennas for Mobile PhonesWu, Chih-Hsien 24 April 2008 (has links)
In this dissertation, a series of multiband hybrid mobile phone antennas, incorporating the electric-current and equivalent magnetic-current excitation mechanisms are presented. The design concept of the hybrid antenna is that the multiband operation is achieved by incorporating the resonant modes generated by the two above-mentioned excitation mechanisms. In the first and the second antenna designs, they are obtained by stacking the antennas using the electric-current and equivalent magnetic-current excitations, and both can achieve multiband operations. For the last two antenna designs, the two different excitation mechanisms can be incorporated on a single metal plate or dielectric substrate. This kind of hybrid are promising for application in bar-type and folder-type mobile phones. Besides, in order to pass some required testing criterions and analyze the environmental effects, the hybrid penta-band mobile phone antenna applied in bar-type and folder-type mobile phones is analyzed. The main topics include the speaker¡¦s effects on the antenna¡¦s performances, the analysis of user¡¦s hand and head effects, and the analysis of the hearing aid compatibility.
|
352 |
Direct AC control of grid assetsSastry, Jyoti 20 May 2011 (has links)
The objective of the proposed research is to investigate feasible approaches to dynamic control of the power grid. Growth in the demand for electric power, and an increase in the penetration of renewable energy resources are causing congestion on an already aging power grid. Conventional grid control involves the use of static assets that operate on long time scales. These assets provide no dynamic control on the grid, and are typically used for scheduled support. Existing solutions (FACTS devices) to dynamic grid control have seen minimal market penetration because of high cost and low reliability. The proposed research provides a solution for dynamic control of the power grid that augments existing grid assets with a thin AC converter (TACC) to realize enhanced dynamic control. The TACC is a direct AC converter with filter elements and no bulk energy storage that dynamically reflects the asset value on the grid. The converter has a fail-normal mode of operation that returns the asset to its initial operating state, thereby not degrading system reliability. Some applications of TACCs include Inverter-Less STATCOMs and Controllable Network Transformers, which are realized by augmenting shunt VAR capacitors and load tap changers respectively. The principle of virtual quadrature sources is proposed to enable conditioning of AC voltages and currents. The concept is a novel method to realize control of phase angle and, or harmonics in single-phase AC converters, with no bulk energy storage. This concept is used to control the TACC and provides the asset with significantly enhanced control capabilities. Scaling of the TACC to utility voltage and power levels has been addressed by proposing a novel multilevel direct AC converter. The concept proposes the use of commercially available low cost semiconductor devices to realize high power converters. The specific application chosen to validate the concept of TACCs, through a medium voltage design, is the Inverter-less STATCOM.
|
353 |
Modelling a new electrical conversion chain for railways applicationsGrave, Justin. January 2012 (has links)
M. Tech. Electrical Engineering. / Aims to develop these railways applications for a better use of the electrical power to reduce pollution and consumption. The specification of this project is to improve the conversion of the electrical energy. This also involves improving the connection between the train and the electrical networks using the pantograph. In this research, I will propose a new architecture for the converters and a structure to provide to the grid the electricity generated through braking. Another point regards the command of the converters, which is directly involved in the system behaviour. In order to obtain the best behaviour possible, a different control as usual will be described and modelled to reduce the total harmonics distortion rate and reach a better efficiency.
|
354 |
High-power bi-directional DC/DC converters with controlled device stressesHan, Sangtaek 11 May 2012 (has links)
The objective of the research is to develop a cost-effective high-power bi-directional dc/dc converter with low total-device ratings, reduced system parasitic effects, and a wide input/output range. Additional objectives of the research are to develop a small-signal model and control methods, and to present performance characterizations. Device stresses in the proposed topology are controlled to maintain minimal levels by varying the duty ratio and phase-shift angle between the primary and the secondary bridges, which results in a low total-device rating, when compared to conventional bi-directional dc/dc topologies. In the proposed topology, soft switching, which reduces power loss, can be realized under specific operating conditions. When the condition that causes minimal device stress is satisfied, zero-voltage switching (ZVS) can be obtained. In the research, ZVS capability is explored for a wide range of voltage conditions as well as for the minimal device-stress condition. The performance characterization includes verifying the soft-switching regions and power-loss estimation. Another part of the thesis is the controller design of the converter. Small-signal models and feedback controllers are developed, and the controllers are experimentally validated. Because in the isolated high-frequency converters, transformer saturation is an important issue, a method to prevent transformer saturation is proposed and experimentally validated.
|
355 |
New current sensing solutions for low-cost high-power-density digitally controlled power convertersZiegler, Silvio January 2009 (has links)
[Truncated abstract] This thesis studies current sensing techniques that are designed to meet the requirements for the next generation of power converters. Power converters are often standardised, so that they can be replaced with a model from another manufacturer without an expensive system redesign. For this reason, the power converter market is highly competitive and relies on cutting-edge technology, which increases power conversion efficiency and power density. High power density and conversion efficiency reduce the system cost, and thus make the power converter more attractive to the customer. Current sensing is a vital task in power converters, where the current information is required for monitoring and control purposes. In order to achieve the above-mentioned goals, existing current sensing techniques have to be improved in terms of cost, power loss and size. Simultaneously, current information needs to be increasingly available in digital form to enable digital control, and to allow the digital transmission of the current information to a centralised monitoring and control unit. All this requires the output signal of a particular current sensing technique to be acquired by an analogue-to-digital converter, and thus the output voltage of the current sensor has to be sufficiently large. This thesis thoroughly reviews contemporary current sensing techniques and identifies suitable techniques that have the potential to meet the performance requirements of the next-generation of power converters. After the review chapter, three novel current sensing techniques are proposed and investigated: 1) The usefulness of the resistive voltage drop across a copper trace, which carries the current to be measured, to detect electrical current is evaluated. Simulations and experiments confirm that this inherently lossless technique can measure high currents at reasonable measurement bandwidth, good accuracy and low cost if the sense wires are connected properly. 2) Based on the mutual inductance theory found during the investigation of the copper trace current sense method, a modification of the well-known lossless inductor current sense method is proposed and analysed. This modification involves the use of a coupled sense winding that significantly improves the frequency response. Hence, it becomes possible to accurately monitor the output current of a power converter with the benefits of being lossless, exhibiting good sensitivity and having small size. 3) A transformer based DC current sense method is developed especially for digitally controlled power converters. This method provides high accuracy, large bandwidth, electrical isolation and very low thermal drift. Overall, it achieves better performance than many contemporary available Hall Effect sensors. At the same time, the cost of this current sensor is significantly lower than that of Hall Effect current sensors. A patent application has been submitted. .... The current sensing techniques have been studied by theory, hardware experiments and simulations. In addition, the suitability of the detection techniques for mass production has been considered in order to access the ability to provide systems at low-cost.
|
356 |
Modeling and control of fuel cell based distributed generation systemsJung, Jin Woo, January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Title from first page of PDF file. Document formatted into pages; contains xvi, 209 p.; also includes graphics. Includes bibliographical references (p. 202-209). Available online via OhioLINK's ETD Center
|
357 |
A comparative analysis of proportional-integral compensated shunt active power filtersGray, Matthew Alan. January 2004 (has links)
Thesis (M.S.) -- Mississippi State University. Department of Electrical and Computer Engineering. / Title from title screen. Includes bibliographical references.
|
358 |
Model predictive control of AC-to-AC converter voltage regulatorChewele, Youngie Klyv 04 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: The development of fast and efficient processors, programmable devices and high power semiconductors has led to the increased use of semiconductors directly in the power supply path in order to achieve strict power quality standards.
New and advanced algorithms are used in the process and calculated on-line to bring about the required fast response to voltage variations. Losses in high voltage semiconductors increase with increased operating frequencies.
A balance between semiconductor power losses and power quality is achieved through control of power semiconductor switching frequencies.
A predictive control algorithm to achieve high power quality and limit the power losses in the high power semiconductor switches through switching frequency control is discussed for a tap switched voltage regulator.
The quality of power, voltage regulator topology and the control algorithm are discussed. Simulation results of output voltage and current are shown when the control algorithm is used to control the regulator. These results are verified by practical measurements on a synchronous buck converter. / AFRIKAANSE OPSOMMING: Die ontwikkeling van vinnige en doeltreffende verwerkers, programmeerbare toestelle en hoëdrywings halfgeleiers het gelei tot 'n groter gebruik van halfgeleiers direk in die kragtoevoer pad om streng elektriese toevoer kwaliteit standaarde te bereik.
Nuwe en gevorderde algoritmes word gebruik in die proses en word aan-lyn bereken om die nodige vinnige reaksie tot spanningswisselinge te gee. Verliese in hoë-spannings halfgeleiers verhoog met hoër skakel frekwensies. 'n Balans tussen die halfgeleier drywingsverliese en spanningskwalteit is behaal deur die skakel frekwensie in ag te neem in die beheer.
'n Voorspellinde-beheer algoritme om ‘n hoë toevoerkwaliteit te bereik en die drywingsverliese in die hoëdrywingshalfgeleier te beperk, deur skakel frekwensie te beheer, is bespreek vir 'n tap-geskakelde spanning reguleerder.
Die toevoerkwaliteit, spanningsreguleerder topologie en die beheer algoritme word bespreek. Simulasie resultate van die uittree-spanning en stroom word getoon wanneer die beheer algoritme gebruik word om die omsetter te beheer. Hierdie resultate is deur praktiese metings op 'n sinkrone afkapper.
|
359 |
Controle neural aplicado a um conversor boost utilizado em aerogeradores de baixa potênciaTonon, Thiago 27 August 2014 (has links)
Fundação Araucária / Este trabalho apresenta o estudo, projeto e simulação de um conversor CC boost, com controle da tensão de saída utilizando redes neurais. O conversor boost estudado neste trabalho está sendo utilizado em um aerogerador de baixa potência, com potência máxima de 3kW. Devido à operação em velocidade variável do aerogerador, a tensão de entrada no conversor também é variável em uma ampla faixa de operação, e a saída deve ser estabilizada para uma tensão fixa. Isso faz com que haja a necessidade do controle do conversor para que as diferenças na tensão de entrada sejam compensadas. Para a compensação dessa diferença, foi projetado um controlador utilizando o método de lugar das raízes. A modelagem do conversor boost também é apresentada. O controlador fornece o tempo de atuação da chave semicondutora de potência utilizada no conversor, controlando assim a tensão de saída. A variação na tensão de entrada, que pode variar de 50V a 350V, faz com que o controlador não atue de forma otimizada para todos os pontos de operação. Dessa forma, um controlador neural foi projetado para que trabalhe como controlador, compensando distúrbios de tensão de entrada do conversor. A validação dos controles foi efetuada através de simulação utilizando o software Matlab/Simulink, para confirmação do desenvolvimento teórico apresentado no trabalho. / This work presents the study, design and simulation of a DC boost converter with output voltage control using neural networks. The boost converter studied in this work is being used in a wind turbine low power, with maximum power of 3kW. Due to the operation of the variable speed of the wind turbine, the input voltage of the converter is also variable over a wide operating range, and the output must be stabilized to a fixed voltage. This means that there is a need to control the converter so that differences in input voltage are compensated. To compensation this difference, a controller was designed using the root locus method. The modeling of the boost converter is also presented. The controller provides the time of operation of power semiconductor switch used in the converter, thereby controlling the output voltage. The variation in input voltage, which can vary from 50V to 350V, makes the driver does not act optimally for all operating points. Thus, a neural controller is designed to work as a controller, compensating disturbances of the converter input voltage. The validation of this controller was performed by simulation using Matlab / Simulink software, to confirm the theoretical development presented in the work.
|
360 |
Desenvolvimento de um conversor monofásico-trifásico com compensação ativa de potência série-paralela / Development of a single-phase to three-phase converter with series-parallel active power compensationNegrão, Fernando Alves 26 August 2016 (has links)
Este trabalho apresenta o estudo, projeto e análise de um conversor monofásico-trifásico com compensação ativa de potência série-paralela, o qual é denominado de UPQC-Mono-Tri e indicado para aplicações em sistemas de eletrificação rurais monofásicos. O UPQC-Mono-Tri é composto por dois inversores PWM, um monofásico operando como filtro ativo de potência série (FAPS) e outro trifásico, no qual um dos braços inversores é conectado à carga e opera como filtro ativo de potência paralelo (FAPP). É adotada a estratégia de compensação dual para a topologia do UPQC proposta, na qual as malhas de controle de tensão e corrente operam com referências de controle senoidais. Desta forma, o FAPS opera como fonte de corrente senoidal, sincronizada com a tensão da rede elétrica monofásica, enquanto o FAPP opera como fonte de tensão senoidal equilibrada e regulada. São realizadas simulações computacionais com o objetivo de avaliar o desempenho da topologia proposta, bem como um protótipo experimental é construído a fim de confirmar o desenvolvimento teórico e validar a proposta deste trabalho. / This work presents a study, design and analysis of a single-phase to three-phase converter with series-parallel active power line compensation, which in this work is called UPQC-Mono-Tri. The proposed topology is indicated for application in rural areas, where only single-phase electric power distribution system is available. The UPQC is composed of two PWM converters, where the first operates as series active power filter (SAPF), while the second is composed of a three-phase inverter, which is implemented by means of three half-bridge inverters. One of the half-bridge inverters is connected to the load and also operates as parallel active power filter (PAPF). The dual compensation strategy is adopted for the proposed UPQC topology, in which both series and parallel controllers handle only sinusoidal references. The SAPF operates as sinusoidal current source synchronized with the utility grid voltage, while the PAPF operates as sinusoidal voltage source providing sinusoidal, balanced and regulated voltages to single or three-phase loads. Simulations are performed in order to evaluate the proposed topology performance, as well as an experimental prototype is built to confirm the theoretical development, and validate the proposed work.
|
Page generated in 0.1027 seconds