Spelling suggestions: "subject:"electrical vehicle""
161 |
Battery Health Estimation in Electric VehiclesKlass, Verena January 2015 (has links)
For the broad commercial success of electric vehicles (EVs), it is essential to deeply understand how batteries behave in this challenging application. This thesis has therefore been focused on studying automotive lithium-ion batteries in respect of their performance under EV operation. Particularly, the need for simple methods estimating the state-of-health (SOH) of batteries during EV operation has been addressed in order to ensure safe, reliable, and cost-effective EV operation. Within the scope of this thesis, a method has been developed that can estimate the SOH indicators capacity and internal resistance. The method is solely based on signals that are available on-board during ordinary EV operation such as the measured current, voltage, temperature, and the battery management system’s state-of-charge estimate. The approach is based on data-driven battery models (support vector machines (SVM) or system identification) and virtual tests in correspondence to standard performance tests as established in laboratory testing for capacity and resistance determination. The proposed method has been demonstrated for battery data collected in field tests and has also been verified in laboratory. After a first proof-of-concept of the method idea with battery pack data from a plug-in hybrid electric vehicle (PHEV) field test, the method was improved with the help of a laboratory study where battery electric vehicle (BEV) operation of a battery cell was emulated under controlled conditions providing a thorough validation possibility. Precise partial capacity and instantaneous resistance estimations could be derived and an accurate diffusion resistance estimation was achieved by including a current history variable in the SVM-based model. The dynamic system identification battery model gave precise total resistance estimates as well. The SOH estimation method was also applied to a data set from emulated hybrid electric vehicle (HEV) operation of a battery cell on board a heavy-duty vehicle, where on-board standard test validation revealed accurate dynamic voltage estimation performance of the applied model even during high-current situations. In order to exhibit the method’s intended implementation, up-to-date SOH indicators have been estimated from driving data during a one-year time period. / <p>QC 20150914</p>
|
162 |
Electric Vehicle Charging Station Markets : An analysis of the competitive situationÖsterberg, Viktor January 2012 (has links)
Electric Vehicles represent a small niche market today, but is predicted to grow rapidly over the next years. In order to prepare for this upcoming trend it is the networks of Electric Vehicle Charging Stations (EVCS) must expand, leading to an increasing demand for EVCSs. The EVCS market is thus becoming increasingly more popular to companies, and therefore this study’s purpose is to investigate this market and its competitive situation. The method used in this study includes a brief market analysis and a competitor analysis. The market analysis includes identification of the EVCS markets together assessing the future of the markets, and identification of EVCS market drivers and restraints. The competitor analysis includes competitor identification, classification and analysis. The top ten competitors are analyzed by the use of document content analysis, the analysis involves understanding the competitors’ target customers, how they do business and how their marketing material is structured. The three most promising EVCS markets, both currently and in the future, are the Asia Pacific, Europe and the North America markets. Most of the top competitors are active within these three markets. Regional developments, and market drivers and restraints of these markets have been identified. The opportunities in the EVCS markets are many as they are relatively unexploited markets without any actual market leaders, and also that all markets are predicted to grow at a very high rate over the coming decade in parallel with the projected mass adoption if Electric Vehicles (EVs). / Idag utgör elfordon endast en liten nischmarknad i transportmarknaden, men denna förväntas växa snabbt under de närmaste åren. För att kunna hantera marknadsetableringen av elfordon måste elfordonsladdningsinfrastrukturen byggas ut, vilket leder till en ökad efterfrågan på elfordonsladdningsstationer. Elfordonsladdningsmarknaden förespås således bli allt mer intressant för företag. Detta examensarbete genomförs på grund av detta växande intresse, då studiens syfte är att undersöka elfordonsladdstationsmarknaden och dess konkurrenssituation. Metoden som används i denna studie inbegriper en kort marknadsanalys och en konkurrensanalys. Marknadsanalysen innehåller identifiering av elfordonsladdningsmarknaderna, vad som driver och hindrar marknaderna, och en bedömning av hur framtiden ser ut för marknaderna. I konkurrensanalysen ingår identifiering, klassificering och analys av de olika konkurrenterna. De tio mest konkurrenskraftiga konkurrenterna analyseras med hjälp av dokumentinnehållsanalys, syftet med analysen är att förstå konkurrenternas målgrupper, hur de gör affärer och hur deras marknadsföringsmaterial är strukturerad. De tre mest lovande elfordonsladdningsmarknaderna, både nu och i framtiden, är marknaderna i Asien och Stillahavsområdet, Europa och Nordamerika. De flesta av de analyserade konkurrenterna är verksamma inom dessa tre marknader. Den regionala utvecklingen, och vad som driver och begränsar marknaderna har identifierats för de tre mest lovande marknaderna. Eftersom dessa marknader är relativt oexploaterade i samband med att de förväntas växa med väldigt hög takt det kommande decenniet parallellt med massanvändningen av elfordon är möjligheterna många för de företag som inriktar sig mot elbilsladdning.
|
163 |
Βελτιστοποίηση λειτουργίας ηλεκτρονικού διαφορικού για μικρό ηλεκτροκίνητο όχημαΜήλας, Νικόλαος 05 February 2015 (has links)
Η παρούσα διπλωματική εργασία πραγματεύεται τη μελέτη και κατασκευή ηλεκτρονικού διαφορικού σε μικρό ηλεκτροκίνητο όχημα. Η εργασία αυτή εκπονήθηκε στο Εργαστήριο Ηλεκτρομηχανικής Μετατροπής Ενέργειας του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών. Στα πλαίσια του θεσμού της πρακτικής άσκησης του τμήματος, ένα τμήμα της εργασίας αυτής εκπονήθηκε στην εταιρία Δ.Ε.Δ.Δ.Η.Ε. Α.Ε.
Σκοπός είναι η υλοποίηση ηλεκτρονικού διαφορικού σε διθέσιο ηλεκτροκίνητο όχημα το οποίο περιλαμβάνει δύο ηλεκτρικούς κινητήρες χωρίς μηχανική σύνδεση μεταξύ τους. Με τη σωστή λειτουργία του ηλεκτρονικού διαφορικού είναι δυνατή η επίτευξη στροφής του οχήματος με ασφαλή για τους επιβάτες τρόπο.
Αρχικά, σχεδιάστηκε το μικροϋπολογιστικό σύστημα του οχήματος το οποίο αναλαμβάνει να συλλέξει τα απαραίτητα σήματα για το σωστό έλεγχο. Επιλέχθηκε να χρησιμοποιηθεί δίαυλος επικοινωνίας CAN για τη μεταφορά των δεδομένων επειδή χαρακτηρίζεται από μεγάλη αξιοπιστία και ταχύτητα μετάδοσης. Το μικροϋπολογιστικό σύστημα απαρτίζεται από τέσσερις πλακέτες τυπωμένου κυκλώματος που επιτελούν τις λειτουργίες του ηλεκτρονικού διαφορικού, της απεικόνισης δεδομένων στο χρήστη και της διεπαφής των ελεγκτών των δύο κινητήρων στο δίαυλο.
Στη συνέχεια, δοκιμάστηκε πειραματικά η αποτελεσματικότητα του μικροϋπολογιστικού συστήματος δίνοντας βάση στην ορθή μετάδοση των δεδομένων και την επαρκή ταχύτητα μεταφοράς αυτών μέσα στο δίαυλο. Μετά την εξακρίβωση της ορθής λειτουργίας του συστήματος, τοποθετήθηκε στο όχημα μαζί με την απαραίτητη καλωδίωση. Κατά την υλοποίηση της καλωδίωσης δόθηκε βάση στον απλό σχεδιασμό και την εύκολη συντήρηση σε περίπτωση βλάβης.
Το επόμενο βήμα ήταν συγγραφή κώδικα σε γλώσσα προγραμματισμού που υλοποιεί τη λειτουργία του ηλεκτρονικού διαφορικού σύμφωνα με τη γεωμετρία Ackermann.
Το τελευταίο στάδιο της διπλωματικής εργασίας ήταν η συνολική αξιολόγηση του συστήματος μέσω μετρήσεων που πραγματοποιήθηκαν από το μικροϋπολογιστικό σύστημα του οχήματος. Κατά τις τελικές μετρήσεις εξακριβώθηκε η αποτελεσματικότητα της γεωμετρίας Ackermann κατά τη στροφή του οχήματος σε χαμηλές ταχύτητες που συναντώνται σε συνθήκες πόλης. / In this diploma thesis the design and the implementation of an electronic differential for a small electric vehicle is studied. The thesis was elaborated in the Laboratory of Electromechanical Energy Conversion of the Department of Electrical and Computer Engineering in the University of Patras. A part of this thesis was accomplished in the company H.E.D.N.O. S.A. within the Internship program of the Department.
The primary target of this thesis is the implementation of an electronic differential for a Buggy type electric vehicle which utilizes two electric motors without mechanical connection between them. The appropriate operation of an electronic differential results in a safe turning trajectory.
In the first step, a microcomputer system was designed for the purpose of collecting and transferring the data required to achieve reliable control of the vehicle. Robust data transfer within the system is achieved by the use of a CAN bus, which characterizes the proposed architecture. The microcomputer system consists of four Printed Circuit Boards (PCBs) performing the operations of the electronic differential, the data visualization to the driver and the interface of the two motor controllers respectively.
Subsequently, the microcomputer system was tested and installed on the vehicle, focusing on the correct and fast data transmission. Moreover the wiring of the system was implemented with the aim to simplify the design for easy debugging in the case of a failure.
Then, a program was written in C to implement the operation of the electronic differential based on the Ackermann geometry.
The final stage of this diploma thesis was the overall evaluation of the system by the examination of the results obtained by experiments. The results of the experiments verified the effectiveness of the Ackermann geometry during the turning of the vehicle in the low speeds of city driving.
|
164 |
A Network Design Framework for Siting Electric Vehicle Charging Stations in an Urban Network with Demand UncertaintyTan, Jingzi January 2013 (has links)
We consider a facility location problem with uncertainty flow customers' demands, which we refer to as stochastic flow capturing location allocation problem (SFCLAP). Potential applications include siting farmers' market, emergency shelters, convenience stores, advertising boards and so on. For this dissertation, electric vehicle charging stations siting with maximum accessibility at lowest cost would be studied. We start with placing charging stations under the assumptions of pre-determined demands and uniform candidate facilities. After this model fails to deal with different scenarios of customers' demands, a two stage flow capturing location allocation programming framework is constructed to incorporate demand uncertainty as SFCLAP. Several extensions are built for various situations, such as secondary coverage and viewing facility's capacity as variables. And then, more capacitated stochastic programming models are considered as systems optimal and user oriented optimal cases. Systems optimal models are introduced with variations which include outsourcing the overflow and alliance within the system. User oriented optimal models incorporate users' choices with system's objectives. After the introduction of various models, an approximation method for the boundary of the problem and also the exact solution method, the L-Shaped method, are presented. As the computation time in the user oriented case surges with the expansion of the network, scenario reduction method is introduced to get similar optimal results within a reasonable time. And then, several cases including testing with different number of scenarios and different sample generating methods are operated for model validation. In the last part, simulation method is operated on the authentic network of the state of Arizona to evaluate the performance of this proposed framework.
|
165 |
Design and Evaluation of Hybrid Energy Storage Systems for Electric PowertrainsMikkelsen, Karl January 2010 (has links)
At the time of this writing, increasing pressure for fuel efficient passenger vehicles has prompted automotive manufactures to invest in the research and development of electrically propelled vehicles. This includes vehicles of strictly electric drive and hybrid electric vehicles with internal combustion engines.
To investigate some of the many technological innovations possible with electric power trains, the AUTO21 network of centres of excellence funded project E301-EHV; a project to convert a Chrysler Pacifica into a hybrid electric vehicle. The converted vehicle is intended for use as a test-bed in the research and development of a variety of advances pertaining to electric propulsion. Among these advances is hybrid energy storage, the focus of this investigation.
A key difficulty of electric propulsion is the portable storage or provision of electricity, challenges are twofold; (1) achieving sufficient energy capacity for long distance driving and (2) ample power delivery to sustain peak driving demands. Where gasoline is highly energy dense and may be burned at nearly any rate, storing large quantities of electrical energy and supplying it at high rate prove difficult. Furthermore, the demands of regenerative braking require the storage system to undergo frequent current reversals, reducing the service life of some electric storage systems.
A given device may be optimized for one of either energy storage or power delivery, at the sacrifice of the other. A hybrid energy storage system (HESS) attempts to address the storage needs of electric vehicles by combining two of the most popular storage technologies; lithium ion batteries, ideal for high energy capacity, and ultracapacitors, ideal for high power discharge and frequent cycles.
Two types of HESS are investigated in this study; one using energy-dense lithium ion batteries paired with ultracapacitors and the other using energy-dense lithium ion batteries paired with ultra high powered batteries. These two systems are compared against a control system using only batteries. Three sizes of each system are specified with equal volume in each size. They are compared for energy storage, energy efficiency, vehicle range, mass and relative demand fluctuation when simulated for powering a model Pacifica through each of five different drive cycles.
It is shown that both types of HESS reduce vehicle mass and demand fluctuation compared to the control. Both systems have reduced energy efficiency. In spite of this, a battery-battery system increases range with greater storage capacity, but battery-capacitor systems have reduced range.
It is suggested that further work be conducted to both optimize the design of the hybrid storage systems, and improve the control scheme allocating power demand across the two energy sources.
|
166 |
Multi-Objective Design Optimization of Electric Vehicle Battery Cooling Plates Considering Thermal and Pressure Objective FunctionsJarrett, Anthony 07 September 2011 (has links)
The current stimuli of climate change and rising oil prices have spurred the development of hybrid electric (HEV), and battery electric vehicles (BEV): collectively termed EVs. However, the battery technology needs much development: at the time of writing, the range of a BEV is too low to be practical in many situations. A critical limitation is the sensitivity of batteries to temperature: the heat generated during operation affects their performance and reduces the lifetime.
This study investigates battery cooling using cooling plates: thin rectangular fabrications inserted between battery cells. A coolant pumped through internal channels absorbs heat and transports it away from the battery. Previous studies of liquid heat exchangers have indicated that the geometry of the channels plays a significant role in the performance; however, there is a lack of rigorous numerical optimization applied to EV cooling plates.
By developing a numerical optimization framework utilizing parametric geometry generation and computational fluid dynamics, this research has investigated the characteristics of optimum cooling plate geometry with respect to three objectives: average temperature, temperature uniformity, and coolant pressure drop. By applying each objective separately, improvements of up to 70% have been made compared to a reference design. The influence of boundary conditions on performance and optimum design has been assessed, and multi-objective optimization has investigated the trade-off between competing objective functions.
Although care should be taken when extrapolating the results beyond the geometry and conditions in the study, some general design principles can be proposed. Objectives of average temperature and pressure drop can both be satisfied by a common design with wide cooling channels, but different characteristics are needed for temperature uniformity. Additional assessments have revealed that optimizations of temperature uniformity are especially sensitive to the boundary conditions, whereas the other objective functions are largely insensitive.
The optimization process developed in this work can be applied to any potential cooling plate design and will lead to gains in the targeted performance measure. In doing so, the performance of the EV will be incrementally improved, thereby advancing the day when an EV is not only an environmental choice, but also a practical choice. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2011-09-07 16:24:14.6
|
167 |
Models and Solution Approaches for Development and Installation of PEV InfrastructureKim, Seok 2011 December 1900 (has links)
This dissertation formulates and develops models and solution approaches for plug-in electric vehicle (PEV) charging station installation. The models are formulated in the form of bilevel programming and stochastic programming problems, while a meta-heuristic method, genetic algorithm, and Monte Carlo bounding techniques are used to solve the problems.
Demand for PEVs is increasing with the growing concerns about environment pollution, energy resources, and the economy. However, battery capacity in PEVs is still limited and represents one of the key barriers to a more widespread adoption of PEVs. It is expected that drivers who have long-distance commutes hesitate to replace their internal combustion engine vehicles with PEVs due to range anxiety. To address this concern, PEV infrastructure can be developed to provide re-fully status when they are needed.
This dissertation is primarily focused on the development of mathematical models that can be used to support decisions regarding a charging station location and installation problem. The major parts of developing the models included identification of the problem, development of mathematical models in the form of bilevel and stochastic programming problems, and development of a solution approach using a meta-heuristic method.
PEV parking building problem was formulated as a bilevel programming problem in order to consider interaction between transportation flow and a manager decisions, while the charging station installation problem was formulated as a stochastic programming problem in order to consider uncertainty in parameters. In order to find the best-quality solution, a genetic algorithm method was used because the formulation problems are NP-hard. In addition, the Monte Carlo bounding method was used to solve the stochastic program with continuous distributions.
Managerial implications and recommendations for PEV parking building developers and managers were suggested in terms of sensitivity analysis. First, in the planning stage, the developer of the PEV parking building should consider long-term changes in future traffic flow and locate a PEV parking building closer to the node with the highest destination trip rate. Second, to attract more parking users, the operator needs to consider the walkability of walking links.
|
168 |
Hybrid electric vehicle powertrain and control system modeling, analysis and design optimizationZhou, Yuliang Leon 12 December 2011 (has links)
Today uncertainties of petroleum supply and concerns over global warming call for further advancement of green vehicles with higher energy efficiency and lower green house gas (GHG) emissions. Development of advanced hybrid electric powertrain technology plays an important role in the green vehicle transformation with continuously improved energy efficiency and diversified energy sources. The added complexity of the multi-discipline based, advanced hybrid powertrain systems make traditional powertrain design method obsolete, inefficient, and ineffective. This research follows the industrial leading model-based design approach for hybrid electric vehicle powertrain development and introduces the optimization based methods to address several key design challenges in hybrid electric powertrain and its control system design. Several advanced optimization methods are applied to identify the proper hybrid powertrain architecture and design its control strategies for better energy efficiency. The newly introduced optimization based methods can considerably alleviate the design challenges, avoid unnecessary design iterations, and improve the quality and efficiency of the powertrain design. The proposed method is tested through the design and development of a prototype extended range electric vehicle (EREV), UVic EcoCAR. Developments of this advanced hybrid vehicle provide a valuable platform for verifying the new design method and obtaining feedbacks to guide the fundamental research on new hybrid powertrain design methodology. / Graduate
|
169 |
Vanadium Redox Flow Battery : Sizing of VRB in electrified heavy construction equipmentZimmerman, Nathan January 2014 (has links)
In an effort to reduce global emissions by electrifying vehicles and machines with internal combustion engines has led to the development of batteries that are more powerful and efficient than the common lead acid battery. One of the most popular batteries being used for such an installation is lithium ion, but due to its short effective usable lifetime, charging time, and costs has driven researcher to other technologies to replace it. Vanadium redox flow batteries have come into the spotlight recently as a means of replacing rechargeable batteries in electric vehicles and has previously be used mainly to store energy for load leveling. It possesses many qualities that would be beneficial to electrify vehicles. The battery has the ability for power and energy to be sized independently which is not dissimilar to internal combustion vehicles. It also has the potential for a tolerance to low discharges, fast response time, and can quickly be refueled by replacing the electrolyte; just like is done when a car refuels at the gas station. The purpose of the study is to determine the possibility of using vanadium redox flow batteries to power heavy construction equipment, a wheel loader, with a finite amount of space available for implementation. A model has been designed in MATLAB to determine how long the battery could last under typically applications for the wheel loader which needs a peak power of 200 kW. From the volume available it has been determined that the battery can be installed with an energy capacity of 148 kWh. The results of the model show that vanadium redox flow batteries can be used to power a wheel loader but due to the limiting energy density and cell components it remains to be impractical.
|
170 |
The Initial Deployment of Electric Vehicle Service Equipment : Case study: Green Highway Region, E14 from Sundsvall in Sweden to Trondheim in NorwayDaniali, Iran January 2015 (has links)
Abstract Electric Vehicles (EVs) are considered a more sustainable alternative vehicle because of their efficient electric motor when compared to internal combustion engines (ICE), and thus help to mitigate environmental problems and reduce fossil fuel dependency. In or-der to support drivers of plug-in hybrid electrical vehicles (PEVs), the installation and adequate distribution of Electric Vehicle Service Equipment (EVSE) is a major factor. The availability of EVSE is a vital requirement in order to charge the vehicle’s battery pack through connection to the electricity grid. This thesis evaluates the likely distribu-tion of a sufficient number of charging stations, measured as the demand of EVSE, for initial deployment in the E14 highway. This highway is also known as the Green High-way region, where a plan has been outlined with the aim to create a fleet of 15% EVs in the area by 2020.In order to model EVSE distribution, the first step was to complete a survey in 2012 on the population density and location of cities, along with the location of already estab-lished charging station locations on the Green Highway. The survey was done with ge-ography information survey (GIS) software. The second step was to create a map of the region. Based on the map, the initial estimate of EVSE locations on the Green Highway project plan was analyzed, as the third step. This was used as an initial analysis. The forth step was to use the location of current gasoline stations to provide as alternative pattern for the EVSE sites.It was observed that the network of gasoline stations correlates positively with population density. Through using these stations, the optimal location of the EVSEs was proposed. However, the model results do not provide for sufficient placement of EVSE sites where the population density is very low. In order to assess the different potential options, it was necessary to create analytical models in Arc-GIS, in which buffer zones were created with a variable size of 10, 15, 20 and 31 miles. This permitted allocation of a geographical area to estimate the optimum sites for charging stations. The resultsiiishowed that for a buffer zone of 10 miles, 28 charging stations were calculated, using buffer zone of 15 miles gives 18 stations, and a buffer zone of 20 miles results in 13 charging station sites. Notably, the estimate of the 20-mile buffer zone gives the same results as for the 50 km (31 miles) buffer zone for residential areas along E14. Therefore, the results show that the optimal design is to deploy 14 fast charging stations with three-phase DC, or 14 fast charging stations with three-phase AC, installed adjacent to the E14 road.
|
Page generated in 0.0682 seconds