• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microdevices for Investigating Pulsed Electric Fields-Mediated Therapies at Cellular and Tissue Level

Bonakdar, Mohammad 29 June 2016 (has links)
Recent attempts to investigate living systems from a biophysical point of view has opened new windows for development of new diagnostic methods and therapies. Pulsed electric fields (PEFs) are a new class of therapies that take advantage of biophysical properties and have proven to be effective in drug delivery and treating several disorders including tumors. While animal models are commonly being used for development of new therapies, the high cost and complexity of these models along with the difficulties to control the electric field in the animal tissue are some of the obstacles toward the development of PEFs-based therapies. Microengineered models of organs or Organs-on-Chip have been recently introduced to overcome the hurdles of animal models and provide a flexible and cost-effective platform for early investigation of a variety of new therapies. In this study microfluidic platforms with integrated micro-sensors were designed, fabricated and employed to study the consequences of PEFs at the cellular level. These platforms were specifically used to study the effects of PEFs on the permeabilization of the blood-brain barrier for enhanced drug delivery to the brain. Different techniques such as fluorescent microscopy and electrical impedance spectroscopy were used to monitor the response of the cell monolayers under investigation. Irreversible electroporation is a new focal ablation therapy based on PEFs that has enabled ablation of tumors in a non-thermal, minimally invasive procedure. Despite promising achievements and treatment of more than 5500 human patients by this technique, real-time monitoring of the treatment progress in terms of the size of the ablated region is still needed. To address that necessity we have developed micro-sensor arrays that can be implemented on the ablation probe and give real-time feedback about the size of the ablated region by measuring the electrical impedance spectrum of the tissue. / Ph. D.
2

Investigação de sistemas e processos biológicos pela técnica de espectroscopia de impedância elétrica

LIMA, Sandro Vagner de 08 October 2015 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-06-27T12:24:48Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese _Sandro Vagner de Lima.pdf: 6041788 bytes, checksum: 30432ac952cb4559dfe9e27b22cd9bf5 (MD5) / Made available in DSpace on 2016-06-27T12:24:49Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese _Sandro Vagner de Lima.pdf: 6041788 bytes, checksum: 30432ac952cb4559dfe9e27b22cd9bf5 (MD5) Previous issue date: 2015-10-08 / Esta tese de doutorado foi dedicada à investigação do modo como a técnica de espectroscopia de impedância elétrica (EIE) poderia ser usada para acompanhar os processos de mudanças conformacionais de macromoléculas biológicas, como proteínas e DNA. Para isso, usamos como sistemas modelos a proteína albumina do soro bovino (BSA), e a formação do complexo polianilina/DNA (PANI/DNA). Com a caracterização de soluções de DNA e BSA por EIE e sua modelagem elétrica convenientemente descrita pelo circuito de Randles (e sua variante), foram determinados os parâmetros relevantes para descrição dos fenômenos de desnaturação e de agregação da proteína e da precipitação do complexo PANI/DNA. As informações obtidas sobre a solubilidade desses últimos complexos são de grande utilidade para o entendimento dos mecanismos de interação entre cadeias de DNA e de polímeros condutores. Do mesmo ponto de vista da EIE, as sucessivas mudanças da conformação da proteína e os detalhes da cinética de sua agregação na interação com surfactantes foram adequadamente correlacionados com a característica elétrica do circuito de Randles das soluções correspondentes. Finalmente, estudos iniciais foram estendidos para a análise dos processos de fibrilação de proteínas. Para todos os problemas abordados, o uso da resistência de transferência de carga elétrica (RCT) (um parâmetro do circuito de Randles) nos permite sugerir ser a técnica de EIE apropriada para caracterizar as diferentes mudanças conformacionais envolvidas em fenômenos que resultam da interação de biomoléculas com moléculas de prova. Assim, ela se confirma como um método competitivo quando comparado ao uso da fluorescência e da absorção UV-Vis (técnicas rotineiramente adotadas para a análise desses problemas). / This doctoral thesis was devoted to the investigation of the technique of electrical impedance spectroscopy as an alternative method to assess conformational changes of biological macromolecules, such as proteins and DNA. For this, we used protein bovine serum albumin (BSA), and the formation of polyaniline (PANI)/DNA complexes as model systems. With the characterization of DNA and BSA solutions by Electrical Impedance Spectroscopy (EIS) and their electrical modeling conveniently described by the Randles circuit (and its variant), we determined the relevant characteristics of phenomena such as the denaturation and aggregation of proteins (BSA), and polymer/DNA complex formation (PANI/DNA). As a result of this approach we identified the existence of different interaction regimes between the chains of polyaniline and DNA molecules that are dependent on the concentration of PANI/DNA and the existence of equilibrium conditions which separate regions of precipitation/stability the PANI/DNA complex. Also from this point of view, the modes of interaction BSA / surfactants involved in the conformation changes well as typical stages associated with fibrillation kinetics were adequately correlated with the electric characteristic of the Randles circuit. In all studies carry out in this thesis, the analysis of the electric charge transfer resistance behavior (RCT) (a parameter of the Randles circuit) when confronted with the results obtained by standard techniques showed that the EIS presents reliable and some comparative advantages. These results allow us to provide an adequate and competitive alternative to conventional methods such as UV-Visible absorption, fluorescence and the use of probe molecules
3

Microfluidic Electrical Impedance Spectroscopy System Automation and Characterization

Frahmann, Keaton 01 June 2021 (has links) (PDF)
In this work, a novel microfluidic cell culture platform capable of automated electrical impedance measurements and immunofluorescence and brightfield microscopy was developed for further in-vitro cellular research intended to optimize cell culture conditions. The microfluidic system design, fabrication, automation, and design verification testing are described. Electrical and optical measurements of the 16 parallel cell culture chambers were automated via a custom LabView interface. A proposed design change will enable gas diffusion, removing the need for an environmental enclosure and allow long-term cell culture experiments. This "lab on a chip" system miniaturizes and automates experiments improving testing throughput and accuracy while creating a highly controllable microenvironment for cell culture. Such a system can be applied to drug development, bioassays, diagnostics, and animal testing alternatives. This work is part of a collaborative effort to define protocols for the electrical and optical characterization of cell culture within a novel microfluidic device with the intent of optimizing microenvironment conditions.
4

The Development of Real-Time Fouling Monitoring and Control Systems for Reverse Osmosis Membrane Cleaning using Deep Reinforcement Learning

Titus Glover, Kyle Ian Kwartei 11 July 2023 (has links)
This dissertation investigates potential applications for Machine Learning (ML) and real-time fouling monitors in Reverse Osmosis (RO) desalination. The main objective was to develop a framework that minimizes the cost of membrane fouling by deploying AI-generated cleaning patterns and real-time fouling monitoring. Membrane manufacturers and researchers typically recommend cleaning (standard operating procedure – SOP) when normalized permeate flow, a performance metric tracking the decline of permeate flow/output from its initial baseline with respect to operating pressure, reaches 0.85-0.90 of baseline values. This study used estimates of production cost, internal profitability metrics, and permeate volume output to evaluate and compare the impact of time selection for cleaning intervention. The cleanings initiated when the normalized permeate flow reached 0.85 represented the control for cleaning intervention times. In deciding optimal times for cleaning intervention, a Deep Reinforcement Learning (RL) agent was trained to signal cleaning between 0.85-0.90 normalized with a cost-based reward system. A laboratory-scale RO flat membrane desalination system platform was developed as a model plant, and data from the platform and used to train the model and examine both simulated and actual control of when to trigger membrane cleaning, replacing the control operator's 0.85 cleaning threshold. Compared to SOP, the intelligent operator showed consistent savings in production costs at the expense of total permeate volume output. The simulated operation using the RL initiated yielded 9% less permeate water but reduced the cost per unit volume ($/m3) by 12.3%. When the RL agent was used to initiate cleaning on the laboratory-scale RO desalination system platform, the system produced 21% less permeate water but reduced production cost ($/m3) by 16.0%. These results are consistent with an RL agent that prioritizes production cost savings over product volume output. / Doctor of Philosophy / The decreasing supply of freshwater sources has made desalination technology an attractive solution. Desalination—or the removal of salt from water—provides an opportunity to produce more freshwater by treating saline sources and recycled water. One prominent form of desalination is Reverse Osmosis (RO), an energy intensive process in which freshwater is forced from a pressurized feed through a semipermeable membrane. A significant limiting cost factor for RO desalination is the maintenance and replacement of semipermeable RO membranes. Over time, unwanted particles accumulate on the membrane surface in a process known as membrane fouling. Significant levels of fouling can drive up costs, negatively affect product quality (permeate water), and decrease the useful lifetime of the membrane. As a result, operators employ various fouling control techniques, such as membrane cleaning, to mitigate its effects on production and minimize damage to the membrane. This dissertation investigates potential applications for Machine Learning (ML) and real-time fouling monitors in Reverse Osmosis (RO) desalination. The main objective was to develop a framework that minimizes the cost of membrane fouling by deploying AI-generated cleaning patterns and real-time fouling monitoring. Membrane manufacturers and researchers typically recommend cleaning (standard operating procedure – SOP) when normalized permeate flow, a performance metric tracking the decline of permeate flow/output from its initial baseline with respect to operating pressure, reaches 0.85-0.90 of baseline values. This study used estimates of production cost, internal profitability metrics, and permeate volume output to evaluate and compare the impact of time selection for cleaning intervention. The cleanings initiated when the normalized permeate flow reached 0.85 represented the control for cleaning intervention times. In deciding optimal times for cleaning intervention, a Deep Reinforcement Learning (RL) agent was trained to signal cleaning between 0.85-0.90 normalized with a cost-based reward system. A laboratory-scale RO flat membrane desalination system platform was developed as a model plant, and data from the platform and used to train the model and examine both simulated and actual control of when to trigger membrane cleaning, replacing the control operator's 0.85 cleaning threshold. Compared to SOP, the intelligent operator showed consistent savings in production costs at the expense of total permeate volume output. The simulated operation using the RL initiated yielded 9% less permeate water but reduced the cost per unit volume ($/m3) by 12.3%. When the RL agent was used to initiate cleaning on the laboratory-scale RO desalination system platform, the system produced 21% less permeate water but reduced production cost ($/m3) by 16.0%. These results are consistent with an RL agent that prioritizes production cost savings over product volume output.
5

Electroding Methods for in situ Reverse Osmosis Sensors

Detrich, Kahlil 19 March 2010 (has links)
The purpose of this work is to develop and evaluate electroding methods for a reverse osmosis (RO) membrane that results in an in situ sensor able to detect RO membrane protein fouling. Four electroding techniques were explored: i) gold exchange-reduction, ii) encapsulated carbon grease, iii) "direct assembly process" (DAP), and iv) platinized polymer graft. The novel platinized polymer graft method involves chemically modifying the RO membrane surface to facilitate platinization based on the hypothesis that deposition of foulant on the platinized surface will affect platinum/foulant/solution interfacial regions, thus sensor impedance. Platinized polymer graft sensors were shown to be sensitive to protein fouling. Electrodes were characterized by their electrical properties, SEM and XPS. Assembled sensors were evaluated for sensitivity to electrolyte concentration and protein fouling. Micrographs showed coating layers and pre-soak solution influence gold exchange-reduction electrode formation. High surface resistance makes gold exchange-reduction an unsuitable method. Concentration sensitivity experiments showed carbon grease and DAP electroding methods produce unusable sensors. Carbon grease sensors have time-dependent impedance response due to electrolyte diffusion within the micro-porous polysulfone support. DAP electroded sensors proved quite fragile upon hydration; their impedance response is transient and lacks predictable trends with changes in concentration. A parametric study of the platinized polymer graft method shows amount of grafted monomer correlates to grafting time, and deposited platinum is a function of exchange-reduction repetitions and amount of grafted monomer. Platinized polymer graft sensors were fouled in both dead-end and cross-flow RO systems, and their impedance trends, while varying between sensors, indicate protein-fouling sensitivity. / Master of Science
6

Study of pH effect on the skin in Franz cell by impedance spectroscopy: an attempt to model incontinence effect on the skin.

Patel, Megha Bhavinkumar January 2022 (has links)
The human skin is the largest and most complex body organ but accessible and attractive for biomarker sampling and transdermal drug delivery. The two procedures are significantly impacted by several biophysical properties of the skin, especially the pH and stratum corneum (SC)hydration. The varying levels of pH on the skin surface usually impact the permeability barrier function of the SC, contributing to the onset of dermatological disorders such as incontinence-associated dermatitis (IAD). Consequently, this scholarly work provides a comprehensive in vitro investigation of the effect of pH on the skin including the effect of artificial urine. The pig skin membranes were used to conduct electrical impedance spectroscopy (EIS)experiments using a four-electrode Franz cell set-up. Artificial urine and buffered solution with varying pH gradients were utilized to induce reversible changes in effective membrane capacitance (Ceff) and membrane resistance (Rmem). The in vitro investigation revealed that exposure to urine changed the electrical impedance properties of the skin. Specifically, we found that the application of artificial urine to the skin reduced skin resistance. At the same time, we also find systematic changes in skin capacitance. Skin capacitance increased with increased pH. Hence the two skin impedance parameters showed a clear effect of artificial urine on the skin. These changes, i.e., the decrease of Rmem and increase of Ceff of skin membranes when they are exposed to artificial urine, can be interpreted as skin barrier deterioration The information provided herein is relevant in describing the detrimental effect of urine on the skin, which probably makes skin barrier more permeable.
7

Étude du système CeO2-Bi2O3 pour applications catalytiques et conductimétriques / Study of CeO2-Bi2O3 system for catalyst and conductivity applications

Bourja, Lamia 17 September 2011 (has links)
Dans le cadre général des études de matériaux multifonctionnels, électrolytiques et catalytiques, susceptibles d’être utilisés au sein de dispositifs de détection de gaz, un système d’oxydes (1-x)CeO2. x/2Bi2O3 avec 0≤x≤1 a été élaboré par coprécipitation puis traitement thermique à 600°C. Le système ainsi obtenu correspondrait à un diagramme de phases original, constitué d’un domaine de solutions solides (Ce1-xBixO2-z pour x ≤ 0,20), d’un domaine multiphasé pour 0,3≤x≤0,7 comportant une phase de type quadratique b’-Bi2O3 et une phase cubique substituée limite (x=0,20), d’un autre domaine multiphasé pour les compositions 0,8≤x≤1, comportant une phase quadratique b-Bi2O3 et une phase monoclinique. Ces deux phases ont déjà été considérées dans la littérature comme phases métastables résultant de divers modes de refroidissement de la phase pure Bi2O3. Dans le cas présent, la stabilisation de ces deux phases b’ et b en présence d’une phase substituée cubique Ce1-xBixO2-z pourrait être due à la présence d’ions cérium au sein duréseau cristallin de Bi2O3. Les interactions catalytiques entre des échantillons polycristallins de ce système avec x variable et des mélanges air-CO et air CH4 ont été étudiées par spectroscopie infrarouge à transformée de Fourier dans le domaine 100 à 525°C. Il apparait que les composés riches en cérium ou riches en bismuth n'ont pas la même réactivité vis-à-vis des gaz CH4 ou CO. Cette diversité de propriétés catalytiques pourrait être utilisée au sein de systèmes multicapteurs de gaz.Une étude de la conduction électrique du système pour x variable a été effectuée par spectroscopie d’impédance électrique entre 100 et 750°C. Les représentations Nyquist des impédances électriques ont été interprétées en mettant en jeu des modèles de type élément de phase constante ou de type Warburg pour prendre en compte l’hétérogénéité des échantillons ainsi que les phénomènes de réaction-diffusion aux électrodes. La conductivité en volume (coeur de grains) augmente avec la composition, avec deux types d’évolutions distinctes : une évolution caractéristique de la phase substituée liée à l’augmentation du taux de lacunes, une évolution dans le système biphasé avec une forte augmentation de conductivité au-dessus de x=0,3 et un maximum atteint pour x=0,7. La phase quadratique de type b’-Bi2O3 connue comme phase métastable est ainsi stabilisée au sein de ce système mixte, au moins à 600°C: elle serait à l’origine de la forte conductivité ionique observée pour la composition proche de x = 0,7. / To develop multifunctional and sensitive materials for gas sensor, catalytic microsystems and electrolytic applications, the multiphase system (1-x).CeO2 + ½ x.Bi2O3 has been investigated in the bismuth composition range 0≤x≤1. A series of ceramics samples has been prepared via a coprecipitation route followed by a thermal treatment at 600°C. X-ray diffraction analyses showed that, for x ≤ 0.20, a solid solution Ce1- xBixO2-x/2 with fluorine structure was formed. For x ranging between 0.25 and 0.7, a tetragonal b’-Bi2O3 phase coexisting with the solid solution was observed. For x ranging between 0.8 and 0.9, a new tetragonal b'-Bi2O3 phase, closely related to the b' phase was evidenced. Finally, close to x=1, the classical monoclinic a-Bi2O3 structure crystallized. The formation of such intermediate tetragonal b and b’ phases could be due of theprobable presence of cerium cations in the Bi2O3 lattice. The solid–gas interactions between these polycristalline materials and air–CH4 and air–CO flows have been studied as a function of time, temperature and composition x, using Fourier transform infrared (FTIR) analyses of the conversions of CH4 and CO gases into the CO2 gas. For all compositions, a low catalytic reactivity was observed with air–CH4 gas flows, while, for the highest bismuth compositions, a high catalytic reactivity was observed with air–CO gas flows. The electrical conduction of this series of polycrystalline samples has been analyzed using electrical impedance spectroscopy, in the temperature range 25 to 750°C. To interpret the Nyquist representations of electrical analyses, various impedance models including constant phase elements and Warburg impedances have been used. The optimal conduction observed close to composition x=0.7 should be due to the stabilization of the tetragonal b’ Bi2O3 phase. This specific multiphase system could present a high interest in catalytic and electrolytic applications.
8

Electrical Impedance Spectroscopy Applied in Plant Physiology Studies

Liu, Xing, s3072856@student.rmit.edu.au January 2006 (has links)
Electrical Impedance Spectroscopy (EIS) is a relatively new method applied to food quality assessment. EIS allows relatively inexpensive assessment, is fast, easy to operate and non-invasive. It has been adopted for investigation of fundamental electrical properties of plant tissues. Although the applications of EIS for food quality determination have been reported previously, the analytical relationships between electrical impedance properties and quality criteria have not yet been fully developed. Further exploration is thus important in acquiring more data on electrical impedance characteristics of fruits and vegetables and researching new approaches for determination of their quality. This dissertation aims to investigate the electrical impedance properties of fruits and vegetables, and explore the relationship between impedance and quality criteria. In particular, the present dissertation outlines experimental research conducted on relationships between impedance properties and fruit tastes as well as the impedance changes observed during ripening process. Impedance measurement to monitor moisture content changes in the progress of drying is also included in this research. In summary, the impedance properties have merits in fruits and vegetables quality assessment. The current used subjective visual inspection and assessment could be replaced by the EIS based approach as it is a more precise measurement of food quality. Further study is required to give this method practical value.
9

Electrical Impedance Spectroscopic Studies On Bread Staling : Sensors And Instrumentation

Bhatt, Chintan M 06 1900 (has links) (PDF)
Quality control is essential in food industry and efficient quality assurance is becoming increasingly important. The assessment of food quality still centers on its sensory properties (appearance, aroma and texture). Bread is one of the most consumed food item all over the world. Bakery product manufacturers expect that the bread should retain all of its attributes during storage and consumers expect their bread to be ‘fresh’. Unfortunately, it remains truly ‘fresh’ for only a few hours after it leaves the oven because the ingredients of the bread undergo series of physical and chemical changes that eventually lead to deterioration, referred as “staling”, of bread quality. Bread staling is classified in two categories: crust (outer portion of bread) staling and crumb (center portion of bread) staling. Crust staling is associated to the moisture migration from crumb to crust during storage. This moisture migration leads to a phenomenon called glass transition at crust. This phenomenon changes the mechanical and dielectric properties of bread crust. Crumb staling is mainly associated to the physicochemical changes in starch. During storage, amorphous starch regains its crystallinity, which increases the firmnesss and dryness of bread crumb. Thus, the knowledge of moisture content, starch recrystallization and the glass transition helps in understanding the bread staling mechanism. There are some volatiles produced from the bread during storage, which forms the characteristic flavor or aroma of the bread. The loss of this characteristic flavor during storage also gives the information about the loss of freshness and staling. Thus, there is a need for detection and monitoring the loss of these volatiles to determine the characteristic flavor during storage. Hence, the present investigations are focused on these issues and developed a measurement facility to monitor the above physicochemical changes in bread during storage. As a part of experimental investigations, two separate test facilities have been developed. A multichannel ring electrodes with suitable instrumentation based on impedance spectroscopy technique is developed for simultaneous measurement of electrical properties of bread at crust and crumb during storage in the frequency range from 50 Hz to 100 kHz. The detailed investigations have been conducted on wheat bread. The variation in capacitance showed that the glass transition phenomenon, at room temperature, in bread crust occurs after 96 h of storage with 18% of moisture in it. The resistance changes at bread crumb showed the starch recrystallization during staling. The electrical property results are justified with the results obtained from the conventional differential scanning calorimmetery (DSC) studies. The impedance measurement at crust and crumb estimates the moisture content at the respective zones of bread. Thus the test facility is used for the simultaneous measurement of moisture content, starch recrystallization and glass transition at crumb and crust respectively without destructing the bread loaf. A few experiments are conducted on maida bread and the obtained results are compared with the wheat bread results. Another test facility has been developed for the detection of volatiles produced from the wheat bread during storage. The gas chromatography and mass spectroscopy (GC-MS) experimentations are conducted to identify the volatiles produced from the bread during storage. The major volatiles produced from wheat bread are found to be 1-Heptanol, 1-Pentanol, 1-Octanol, Furan and Hydroperoxyde. A conducting polymer based gas sensor is designed and developed to sense these volatiles and the changes in its electrical property is monitored with a suitable instrumentation based on impedance spectroscopy technique in the frequency range from 10 Hz to 2MHz. Experimental investigations are carried out in an in-house air tight closed test chamber. The bread sample and the designed sensor are kept inside the test chamber and closed tightly so that only bread volatile can interact with the sensor. The sensor response is monitored by measuring the changes in its capacitance upon exposure to organic volatiles produced from bread during storage. It is observed that the capacitance of the sensor changes with the quantitative changes of the above volatiles. Thus, the test facility is found quite suitable for the detection and monitoring the bread volatiles produced during storage, which finally affects the aroma property. Thus, the developed experimental test facilities with suitable sensors and instrumentation based on impedance spectroscopy technique are found quite suitable to monitor the changes in physicochemical properties and aroma of bread during storage. The correlation between the measured electrical properties and the changes in the textural and flavor properties of bread during storage has been established. The results obtained with the developed test facilities are in good agreement with the results obtained from the standard traditional techniques like DSC and GC-MS.
10

Low-Voltage Electrowetting on Dielectrics Integrated and Investigated with Electrical Impedance Spectroscopy (LV-EWOD-EIS)

Li, Yingjia 07 August 2018 (has links)
No description available.

Page generated in 0.1315 seconds