• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Peak Load Shaving Strategies of an Office Building : A Case Study at AirSon

Farzam, Azin January 2024 (has links)
Introduction: The global demand for renewable energy is expected to grow annually due to rising electricity consumption and economic and regulatory incentives. Efficient consumption and management of electricity consumption can support this trend (shifting from fossil resources to renewable resources) and benefit companies economically by reducing peak loads, reducing subscription costs, and protecting companies' power systems and networks. For effective and efficient electricity management that can help reduce peak electricity demand, resulting in lower demand charges and further reducing operational costs, it is necessary to understand the amount of electricity consumption and its influencing factors. Seasonal and daily variations and social behaviors influence changes in electricity consumption. Electric load variation management is essential for electricity consumers to control costs related to maximum load capacity and building electrical network equipment protection. This research presents an assessment method for describing daily electric load variations. It is applied to electricity consumption systems, but the technique is generic and can be applied to all activities where daily variations occur.Purpose: This thesis aims to show when and why peak load occurs in an office building and also to provide methods to improve the efficiency of electricity consumption during peak load.Method: This method implemented parameters like temperature, electricity consumption, and hours. It assessed a year's hourly electricity consumption in an office building to understand how load changes daily, weekly, and monthly. The case study was the AirSon office building. Data-driven from the efergy online portal was based on the hourly consumption every year.Results: The results show that the outdoor temperature, working hours, and consumption behavior can affect the overall electricity consumption and peak loads. Efficient building strategies are crucial for reducing peak loads by smartly controlling indoor temperature and managing electricity demand. The analysis offers insights into office building electricity consumption patterns and recommends strategies such as prioritizing car charging, optimizing the heat pump's operation of the HVAC system, improving the electricity management system, and using energy storage systems to reduce peak load.Discussion: The findings from this analysis carry implications for electricity consumption. It can provide some insights for reducing electricity consumption and enhancing efficiency in office buildings and similar facilities and also prioritization and rescheduling car chargers. In conclusion, it has interpreted and discussed the various electricity-saving strategies and their potential impact on electricity management.
2

Énergie et économie : analyse de la relation consommation d'électricité et production de richesse dans une perspective d'intelligence économique / Economy and Energy : analysis of the Relation between the Electricity Consumption and the Production of Wealth from the Perspective of Competitive Intelligence

Sanoussi, Hamadou 16 January 2014 (has links)
L’objet de la thèse consiste à analyser la relation entre la consommation d’électricité et le produit intérieur brut dans une démarche d’intelligence économique. Plus précisément il s’agit d’analyser l’évolution de l’intensité électrique de l’activité économique sur la période de 2003 à 2012 dans les pays développés du G7 et estimer leurs demandes électriques entre 2013 et 2022.Une première partie cherche à explorer les aspects théoriques et pratiques de l’intelligence économique afin de la comprendre et l’appliquer. Une deuxième partie est consacrée à l’analyse empirique. Nous sommes parvenus aux résultats suivants :Premièrement, les courbes d’intensité électrique de deux pays : le Canada et le Etats – Unis dominent celles des autres pays développés, ainsi, les économies de ces deux pays de l’Amérique du nord sont plus énergivores que celles du Japon et des pays de l’Union européenne. Ensuite, l’évolution temporelle de la consommation d’électricité par unité de PIB sur dix années (2003 – 2012) a globalement diminué dans cinq pays: le Canada (-12%) ; le Royaume – Uni (-5, 3%) ; les Etats – Unis (-5%) ; la France (- 4%) ; l’Allemagne (-3%). Par contre, elle s’est détériorée au Japon (+5%) et en Italie (+6%). L’effet de « structure » est négatif dans tout l’échantillon, il traduit donc t une tertiarisation généralisée. Par contre l’effet « d’efficacité électrique » est contrasté. Il est négatif au Canada et aux Etats – Unis et positif dans le reste du groupe.Deuxièmement, les estimations indiquent une croissance généralisée de la demande électrique de 2013 - 2022 dans l’ensemble des pays du G7. Par ailleurs, les coefficients élasticité électricité /PIB sont inférieurs à l’unité dans tous les pays, excepté l’Italie. Cela signifie que la demande d’électricité moyen annuel de ces pays devrait croître moins vite que leurs PIB. Enfin, les principales perspectives de recherche qui apparaissent à l'issue de cette thèse concernent la transposition de notre modèle d’analyse (l’intelligence énergétique) aux autres formes d’énergie à savoir : le pétrole, le gaz, le charbon et les renouvelables .Finalement, ce modèle peut servir d’instrument de politique économique, énergétique et environnementale aux acteurs économiques et politiques (Etats, entreprises, ONG, OIG.). / The subject of this thesis consists of an analysis of the relationship between electricity consumption and Gross Domestic Product from the perspective of Competitive Intelligence. More specifically, it analyzes the evolution of the electrical intensity of economic activity from 2003 to 2012 in the developed countries of the G7, and then estimates their electricity needs from 2013 to 2022. Part one attempt to explore theoretical and practical aspects of Competitive Intelligence to understand and apply them, while part two is devoted to the empirical analysis itself.Concerning the latter, our results are as follows:First, the electrical intensity curves of two countries—Canada and the United States—dominate those of other developed countries; thus, the economies of these two North American countries are more energy-hungry than those of Japan and the countries of the European Union. The overall temporal evolution of electricity consumption per GDP unit over a ten-year period (2003-1012) has gone down in five countries: Canada (-12%), the United Kingdom (-5.3%), the United States (-5%), France (-4%), and Germany (-3%). On the other hand, this evolution has gone the other direction in Japan (+5%) and Italy (+6%). The effect of “structure” is negative across all analyzed data, suggesting general “tertiarisation”. However, the effect of “electricity efficiency” is mixed: it is negative in the United States and Canada, but positive for the rest of group.Second, estimations indicate an overall growth in electricity demand across all G7 countries from 2013 to 2022. Additionally, electrical elasticity coefficients/GDP units are down in all countries except Italy. This tells us that the average annual demand for electricity in these countries should increase at a slower rate than their respective GDPs.Lastly, the primary research perspectives that appear at the beginning of this thesis concern the transposition of our model of analysis (energetic intelligence) onto other forms of energy such as oil, natural gas, coal, and renewable energy sources. In the end, this model could be useful to economic and political authorities (governments, private companies, NGOs, IGOs, etc.) as an instrument of economic, energy, and environmental policy.

Page generated in 0.0875 seconds