• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 14
  • 11
  • 7
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 131
  • 68
  • 35
  • 28
  • 28
  • 19
  • 18
  • 18
  • 14
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Galvanické pokovování hořčíkové slitiny s Ni-P bond coat / Galvanic plating of magnesium alloy with Ni-P bond coat

Zahálka, Martin January 2019 (has links)
Cílem této diplomové práce jse najít nejnižší možnou tloušťku nikl-fosforového povlaku, který může být galvanicky pokoven mědí bez defektů na horčíkové slitině, nikl-fosforového nebo měděného povlaku. V teoretické části jsou shrnuty poznatky o hořčíkových slitinách a jejich korozi. Navíc se teoreticá část zaměřuje na popis procesu bezproudého niklování a elektrochemického pokovování mědí a jejich porovnání. Na konci teoretické části je shrnut současný výzkum o elektrochemickém pokovování hořčíkových slitin. V experimentální části byl popsán proces přípravy povlaků Ni-P a Cu na horčíkové slitině AZ91. Na jedné vrstvě a dvojité vrstvě Ni-P povlaku byla provedena elektrodepozice mědi. Navíc byl diskutován vliv předůpravy před samotnou elektrodepozicí mědi. Za účelem zjištění korozních vlastností vzorků byl vykonán potenciodynamický test. Následně byly připraveny metalografické výbrusy jednotlivých vzorků a pomocí světelného a rastrovacího elektronového mikroskopu byla provedena charakterizace. Na konec bylo zjištěno prvkové složení jednotlivých povlaků pomocí EDX analýzy.
122

Příprava povlaků na bázi Ni-P na tvářených hořčíkových slitinách / Ni-P based coatings preparation on wrought magnesium alloys

Buchtík, Martin January 2016 (has links)
The aim of this diploma thesis was summary of all steps and knowledge necessary to deposition of quality Ni-P coatings deposited on wrought magnesium alloys AZ31 and AZ61. There is the treatise about wrought magnesium alloys AZ31 and AZ61. Thesis includes its phase composition in the theoretical part. There are given its possible processing methods too. Next, there is desribed the mechanism of deposition of Ni-P coatings, components required to electroless deposition and factors affecting the quality and properties of these coatings. The theoretical part is ended by serie of reviews. Authors of these reviews deal with pretreatment of substrates, preparation, characterization and measuring of mechanical, structure and corrosion properties of deposited coatings. The optimalization of pretreatment, parametres and composition of nickel bath suitable for magnesium alloys is described in experimental part. The microstructure, present interlayer between substrate and Ni-P coating and chemical composition of deposited coatings was observed and measured by optical and electron microscopy. The mechanical characterization of Ni-P coatings was performed by microhardness tester.
123

Selective Deposition of Metallic and Semiconductor Materials onto DNA Templates for Nanofabrication

Liu, Jianfei 30 November 2011 (has links) (PDF)
This work examines the selective deposition of metallic and semiconductor materials onto DNA templates for the fabrication of nanodevices. DNA origami provides a simple and robust method for folding DNA into a variety of shapes and patterns and makes it possible to create the complex templates needed for nanodevices, such as nanoelectronic circuits, plasmonics, and nanosensors. Metallization of DNA origami templates is essential for the fabrication of such nanodevices. In addition, selective deposition of semiconductor materials onto the DNA template is of importance for making many nanodevices such as nanocircuits. Metallization of DNA origami presents several challenges beyond those associated with the metallization of other DNA templates such as λ-DNA. All of these challenges were addressed in this study. DNA origami templates were seeded with Ag and then plated with Au via electroless deposition. Selective continuous metal deposition was achieved, with an average metallized height as small as 32 nm. The structure of T-shaped DNA origami was also retained after metallization. Following the metallization of complete origami, site-specific metallization of branched DNA origami was also demonstrated. To achieve this, staple strands at select locations on origami were replaced with staple strands modified with binding sites at the end. These binding sites then attached to thiolated DNA coated Au nanoparticles through base pairing. The continuous Au nanowires formed at designated sites on DNA origami after Au plating had an average width of 33 nm, with the smallest ones ~20 nm wide. The continuity of nanowires was verified by conductivity tests- the only tests of this nature of which I am aware. Moreover, predesigned sites on "circuit-shaped" DNA origami were successfully metallized. The selective deposition of a variety of materials onto DNA templates for the formation of continuous DNA-templated nanowires was also demonstrated. Specifically, an electroless Ni plating solution was developed to enable the fabrication of uniform and continuous DNA-templated Ni nanowires. Tests showed that these DNA-templated Ni nanowires were conductive. Moreover, continuous DNA-templated Bi2Te3 and/or Te nanowires have been fabricated through galvanic displacement of DNA-templated Ni and Cu nanowires. Altogether, these results represent important progress toward the realization of DNA-templated nanofabrication.
124

Synthesis, Annealing Strategies and in-situ Characterization of Thermally Stable Composite Thin Pd/Ag Alloy Membranes for Hydrogen Separation

Ayturk, Mahmut Engin 23 April 2007 (has links)
Composite thin Pd/Ag alloy membranes with long-term thermal and chemical stabilities have potential applications for H2 separation via catalytic membrane reactors and may be one of the key determinants to achieve the 21st century's global hydrogen economy. This work provides a detailed microstructure characterization study and a better understanding of the fundamental principles involved in the synthesis of a novel Pd/Ag intermetallic diffusion barrier formed by the bi-metal multi-layer (BMML) deposition technique. The BMML deposition technique formed an extremely effective Pd/Ag intermetallic diffusion barrier and significantly improved the thermal and long-term stability of the composite Pd and Pd/alloy membranes over a temperature range of 500-600oC. In addition, high temperature annealing studies over a temperature range of 500-800oC in H2 atmosphere led a thorough understanding of the surface interactions and the phase changes between the Pd and Ag metals and the porous metal support elements (Fe, Cr and Ni) and it was shown by the SEI, EDX and X-ray phase analyses that the Ag/Fe and Ag/Ni binary systems exerted complete immiscibility compared to the completely miscible solid solutions of Pd/Fe and Pd/Ni phases. A novel characterization method of in-situ time-resolved high temperature X-ray diffraction (HTXRD) analysis was used to elucidate the mechanistic details of the isothermal nucleation and growth kinetics of the Pd/Ag alloy phase over a temperature range of 500-600oC in H2. The nucleation of the Pd/Ag alloy phase was instantaneous where the growth mechanism was through diffusion-controlled one-dimensional thickening of the Pd/Ag alloy layer. The Pd/Ag alloy phase growth was strongly dependent upon the deposition morphology of the as-synthesized Pd and Ag layers due to the presence of the heterogeneous nucleation sites. Based on the empirical rate constants derived from the solid-state reaction models, the estimated activation energies for the Pd/Ag alloy phase transformation were 236.5 and 185.6 kJ/mol and in good agreement with the literature values of 183-239.5 kJ/mol. The successful utilization of surface modification techniques and modified plating conditions led to the synthesis of several dense Pd/Ag layers, which were as thin as 5-15 µm with a bulk Ag content in the 10-40 wt% range. The long-term testing of the composite Pd/Ag membranes (5-15 µm) at 500oC showed stable hydrogen permeances as high as 30 to 54 m3/m2-h-atm0.5 with H2/He selectivities ranging from 200 to 14000. Furthermore, the atomic absorption flame analysis was used for the first time to elucidate the effects of temperature, initial metal ion concentration, initial hydrazine concentration and bath agitation on the electroless plating rates of Pd and Ag. The electroless plating of both Pd and Ag were strongly affected by the external mass transfer in the absence of bath agitation. The external mass transfer limitations for both Pd and Ag deposition have been overcome at or above an agitation rate of 400 rpm, resulting in a maximum conversion of the plating reaction and dramatically shortened plating times with the added advantage of uniform deposition morphology as evidenced by the SEI micrographs. Finally, the agitation rate of 400 rpm was successfully employed for the synthesis of composite Pd and Pd/Ag membranes. The H2 permeance for a 4.7 µm thick pure-Pd membrane at 400oC was as high as 61 m3/m2-h-atm0.5 with H2/He selectivity over 310 after a total testing period of 690 hours.
125

Dépôt en couches minces de nickel chimique multifonctionnel / Thin Deposit of Multifunctional Electroless Nickel

Forestier, Igor 18 May 2018 (has links)
Les pompes sèches primaires dédiées aux procédés de fabrication en microélectronique sont soumises à des environnements très corrosifs de plus en plus oxydants et halogénés (Cl2, F2 et O2). Or pour des raisons mécaniques et économiques, les parties fonctionnelles des pompes sont usinées dans la fonte à graphite sphéroïdale EN-GJS-500-7. La fonte est alors protégée par un dépôt de nickel-phosphore (NiP) chimique. Cette thèse, reprend des études classiques sur la cinétique et le mécanisme de nickelage d'une part, et sur l'optimisation des propriétés mécaniques et la résistance à la corrosion des couches de NiP d'autre part. Cependant, le caractère innovant de ce travail repose sur la réalisation de couches NiP sur un substrat en fonte à graphite sphéroïdale.L'étude de la cinétique de nickelage et la caractérisation morphologique des revêtements en fonction du temps de dépôt a montré l'influence de la nature chimique du substrat. Les sphères de graphite affleurantes à la surface du substrat n'étant pas catalyseur du nickel chimique, provoque des défauts dans le revêtement, dommageables pour la conformité du dépôt. Il a été montré qu'une polarisation cathodique de la surface du substrat pouvait, dans les premiers instants du dépôt, amorcer le nickelage à l'aplomb des sphères de graphite.Une relation entre la microstructure des dépôts en fonction des traitements thermiques subis et des propriétés mécaniques des couches de NiP a été mise une évidence. Les dépôts NiP amorphes présentent une faible dureté et un comportement ductile tandis que les dépôts cristallisés possèdent une dureté élevée et un comportement fragile. Ces dépôts ont une bonne tenue à la corrosion en milieux halogéné lorsqu'ils sont intacts. Actuellement, au niveau industriel, les dépôts les plus fragiles sont choisis, bien qu'ils présentent une résistance à la corrosion plus faible : en effet, la durée de vie des pompes est alors supérieure car les effets de grippage sont atténués.Mots-clés : nickel chimique, résistance à la corrosion, fonte à graphite sphéroïdale, caractérisation physico-chimique, couches minces, durabilité mécanique / Primary dry pumps dedicated to manufacturing processes in microelectronics are subjected to highly corrosive environments that are increasingly oxidizing and halogenous (Cl2, F2 and O2). However, for mechanical and economic reasons, the functional parts of the pumps are machined in EN-GJS-500-7 spheroidal graphite cast iron. The cast iron is consequently protected by a nickel-phosphorus chemical deposit. This thesis is based on classical studies on the kinetics and the nickel-plating mechanism on the one hand, and on the optimization of the mechanical properties and corrosion resistance of the NiP layers on the other hand. The innovative nature of this work is based on the production of NiP layers on a spheroidal graphite cast iron substrate.The study of the kinetics of nickel-plating as well as the morphological characterization of coatings as a function of the deposit time showed the influence of the chemical nature of the substrate. The flush graphite spheres on the surface of the substrate being not a catalyst for the chemical nickel, they can cause defects in the coating and a loss of compliance. It has been shown that a cathodic polarization of the surface of the substrate, in the first moments of the deposit, could initiate the nickel-plating right on the graphite spheres.A relationship exists between the microstructure of the deposits as a function of the thermal treatments undergone and the mechanical properties of the NiP layers. The amorphous NiP deposits have a low hardness and a ductile behavior while crystallized deposits have a high hardness and a brittle behavior. These deposits have a good resistance to corrosion in halogenated environments when they are intact. Actually, at the industrial level, the most brittle deposits are chosen, although they have a lower corrosion résistance: indeed, the service life of the pumps is higher because the seizing effect are minimized.Keywords: electroless nickel, resistance to corrosion, spheroidal graphite cast iron, physicochemical characterization, thin layers, mechanical durability
126

Nanášení kovové vrstvy na keramické substráty pro úpravu povrchových vlastností / Tailoring of physical properties of ceramic surface by the metallic layer deposition

Dvorský, Vojtěch January 2019 (has links)
The master thesis focuses on the preparation of nickel coating on ceramic (Al2O3) substrate. The deposition of nickel was carried out by the electroless plating method in bath at various kinetic conditions. An impact of varied size, shape and roughness on the quality of the coated surface was investigated. The main goal was to find optimized conditions of the plating process of the thin metal coatings. Prepared nickel coatings were analysed by SEM, EDX analysis, mechanical profilometry and the plating bath was analysed by UV-VIS spectrophotometry. The continuous nickel coatings were achieved by modifying the deposition process, and the kinetic mechanism of experimental conditions was described.
127

Pokovování technických plastů pro výrobu odlehčených konstrukčních dílů pro dopravní průmysl / Metallization of technical plastics for lightweight traffic components with reduced fuel consumption

Sanetrníková, Dominika January 2017 (has links)
The beginning of this thesis is dedicated to polymeric materials, which include plastics an composites. Plastics are shortly divided into two groups, thermoplastics and thermosets. The following part is the use of plastics and composites in traffic industry and briefly this work focuses on techniques of recycling of this materials. This work also focuses on the techniques of thin film deposition, electroless plating, electrodeposition as well and plating in the vacuum environment. special techniques of thin film deposition are also mentioned shortly. The coatings of polymer including cleaning and surface activation is introduced using various techniques including plasma treatment. The surface treatment of polyetheretherketone (PEEK) is included too. The final part describes performed experiments and discussion of results.
128

Electrochemical and Photocatalytic Oxidation of Hydrocarbons

Rismanchian, Azadeh January 2014 (has links)
No description available.
129

Novel fabrication and testing of light confinement devices

Ring, Josh January 2016 (has links)
The goal of this project is to study novel nanoscale excitation volumes, sensitive enoughto study individual chromophores and go on to study new and exciting self assemblyapproaches to this problem. Small excitation volumes may be engineered using light con-finement inside apertures in metal films. These apertures enhance fluorescence emissionrates, quantum yields, decrease fluorescence quenching, enable higher signal-to-noiseratios and allow higher concentration single chromophore fluorescence, to be studied byrestricting this excitation volume. Excitation volumes are reported on using the chro-mophore's fluorescence by utilising fluorescence correlation spectroscopy, which monitorsfluctuations in fluorescence intensity. From the correlation in time, we can find the res-idence time, the number of chromophores, the volume in which they are diffusing andtherefore the fluorescence emission efficiency. Fluorescence properties are a probe ofthe local environment, a particularly powerful tool due to the high brightness (quantumyield) fluorescent dyes and sensitive photo-detection equipment both of which are readilyavailable, (such as avalanche photodiodes and photomultiplier tubes). Novel materialscombining the properties of conducting and non-conducting materials at scales muchsmaller than the incident wavelength are known as meta-materials. These allow combi-nations of properties not usually possible in natural materials at optical frequencies. Theproperties reported so far include; negative refraction, negative phase velocity, fluorescenceemission enhancement, lensing and therefore light confinement has also been proposed tobe possible. Instead of expensive and slow lithography methods many of these materialsmay be fabricated with self assembly techniques, which are truly nanoscopic and otherwiseinaccessible with even the most sophisticated equipment. It was found that nanoscaled volumes from ZMW and HMMs based on NW arrays wereall inefficient at enhancing fluorescence. The primary cause was the reduced fluorescencelifetime reducing the fluorescence efficiency, which runs contrary to some commentatorsin the literature. NW based lensing was found to possible in the blue region of the opticalspectrum in a HMM, without the background fluorescence normally associated with a PAAtemplate. This was achieved using a pseudo-ordered array of relatively large nanowireswith a period just smaller than lambda / 2 which minimised losses. Nanowires in the traditionalregime lambda / 10 produced significant scattering and lead to diffraction, such that they werewholly unsuitable for an optical lensing application.
130

Modifikace povrchu pokročilých hořčíkových slitin povlaky na bázi Ni-P / Advanced Magnesium Alloys Surface Modification by Ni-P Based Coatings

Kosár, Petr January 2017 (has links)
The dissertation thesis deals with the modification of the surface of advanced magnesium alloys with Ni-P based coatings. At the beginning of the theoretical part, the structures of the used magnesium alloys and the influence of individual alloying elements on their properties are characterized. In the following part of the thesis the current knowledge in the field of electroless deposition on metal substrates is summarized. The theoretical part of the thesis is closed with contemporary research study in the field of clarification and determination of possible mechanism of electroless deposition. For the subsequent investigation of the mechanism of electroless deposition on magnesium alloys, it was necessary to characterize the microstructure and composition of individual magnesium alloys in the first phase of the experimental part. The exact composition of elements was determined using glow discharge optical emission spectroscopy and scanning electron microscopy with EDS was used for composition of phases of magnesium alloys. Using scanning electron microscopy and detailed elemental analysis of the coated magnesium substrate, it was found that for optimal Ni-P coating deposition on magnesium alloys, acid pickling prior coating is required in a mixture of acetic acid and sodium nitrate. Using the XPS method, it was found that the phosphorus atom in the sodium dihydride-diphosphate reducing agent has a + V charge. 4 At the end of the experimental part scanning electron microscopy and detailed elemental analyses were used for monitoring of the Ni-P particles nucleation and growth in the first 120 seconds of the coating process.

Page generated in 0.0499 seconds