101 |
Influence of scale, geometry, and microstructure on the electrical properties of chemically deposited thin silver filmsPeterson, Sarah M., 1975- 12 1900 (has links)
xv, 101 p. ; ill. (some col.) A print copy of this title is available through the UO Libraries under the call number: KNIGHT QC176.84.E5 P47 2007 / Silver films with nanoscale to mesoscale thicknesses were produced by chemical reduction onto silica substrates and their physical and electrical properties were investigated and characterized. The method of silver deposition was developed in the context of this research and uses a single step reaction to produce consistent silver films on both flat silica coverslips and silica nanospheres of 250-1000 nm. Both the structure and the electrical properties of the silver films are found to differ significantly from those produced by vacuum deposition. Chemically deposited (CD) silver is not uniformly smooth, but rather is granular and porous with a network-like structure. By quantitatively accounting for the differences in scale, geometry, and microstructure of the CD films, it is found that the same models used to describe the resistivity of vacuum deposited films may be applied to CD films. A critical point in the analysis that allows this relation involves the definition of a geometric parameter, g, which replaces the thickness, t, as the critical length that influences the electrical properties of the film. The temperature dependent properties of electrical transport were also investigated and related to the microstructure of the CD films. A detailed characterization of CD silver as shells on silica spheres is also presented including physical and optical properties. In spite of the rough and porous morphology of the shells, the plasmon resonance of the core-shell structure is determined by the overall spherical shell structure and is tunable through variations in the shell thickness. Preliminary investigations into the electrical transport properties of aggregates of silver coated spheres suggest similarities in the influence scale, geometry, and microstructure to silver films on flat substrates. The aggregates of shells also exhibit pressure related resistance behavior due to the composite structure. / Adviser: Miriam Deutsch
|
102 |
Desenvolvimento de revestimentos de Ni-W-P por deposição químicaEtt, Bardia January 2016 (has links)
Prof. Dr. Renato Altobelli Antunes / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Nanociências e Materiais Avançados, 2016. / Corrosão e desgaste são processos destrutivos que causam enormes prejuízos, comprometendo a segurança de pessoas e das instalações industriais, residenciais e comerciais. Para aumentar a vida útil de elementos de máquinas, por exemplo, revestimentos de níquel obtidos por deposição química são largamente utilizados por sua excelente resistência à corrosão e ao desgaste, boa soldabilidade e brasagem. Por meio do processo de deposição química, a obtenção de ligas e compósitos diversos é possível, visando reforçar e/ou alterar propriedades magnéticas, elétricas, óticas e mecânicas, como dureza, lubricidade, ductilidade, coeficiente de fricção entre outras. A adição de compostos contendo tungstênio nos banhos de deposição química leva à obtenção de revestimentos ternários Ni-W-P, o que afeta o comportamento de corrosão e as características tribológicas dos revestimentos de Ni-P. Neste trabalho realizou-se a incorporação de tungstênio a revestimentos de Ni-P por meio de deposição química, variando-se a concentração de tungstênio por meio da adição de diferentes teores de tungstato de sódio aos banhos. O objetivo foi desenvolver revestimentos ternários de Ni-W-P e investigar o efeito da adição de tungstênio sobre a estrutura, morfologia, resistência à corrosão e propriedades de atrito das camadas. Os revestimentos foram submetidos a um tratamento térmico por uma hora em diferentes temperaturas a fim de promover a formação de fase de fosfeto de níquel (Ni3P), aumentando sua dureza e resistência ao desgaste. Os resultados indicaram que houve a formação de Ni3P com o tratamento térmico realizado. A incorporação de tungstênio levou à formação de uma camada mais compacta e densa, com teor reduzido de fósforo e maior capacidade de proteção contra a corrosão. Além disso, houve um aumento de dureza dos revestimentos, que foi dependente da temperatura na qual ocorreu o tratamento térmico. O coeficiente de atrito apresentou uma variação complexa, a qual não pode ser associada ao teor de tungstênio nos revestimentos. / Corrosion and wear are destructive processes that cause damage and losses affecting the safety of persons, buildings, bridges and facilities for industrial, commercial or residential use. In order to increase the life of machine elements, for example, the use of nickel coatings obtained by chemical reduction is widely used. Electroless nickel coatings are used for functional or decorative purposes or to restore functional properties. In addition to the excellent corrosion and wear resistance, the coating withstands soldering, welding and brazing. The codeposition of one or more elements to binary nickel alloys aims to enhance and/or change the resistance to corrosion, wear, abrasion, magnetic, electrical, optical, or friction properties. By adding tungsten-containing compounds to the electroless deposition bath ternary Ni-W-P are obtained, thus affecting the corrosion behavior and tribological properties of the Ni-P film. In this work, the incorporation of tungsten to Ni-P coatings was carried out using electroless depositon, varying the content of sodium tungstate in the bath. The aim was to develop ternary Ni-W-P coatings and to investigate the effect of tungsten incorporation on the structure, morphology, corrosion behavior and friction properties of the deposited layers. The coatings were annealed for one hour at different temperatures so as to promote the formation of nickel phosphide phases, increasing its hardness and wear resistance. The results showed that Ni3P was formed upon annealing. Tungsten incorporation allowed the formation of a more compact and dense film with reduced phosphorus content and improved corrosion protective ability. Moreover, hardness was increased, but this effect was dependent on the annealing temperature. The coefficient of friction showed a complex variation which does not allow to identify a clear relationship with the tungsten content in the film.
|
103 |
Charakterizace korozní odolnosti nikl-fosforových povlaků na hořčíkových slitinách / Characterization of corrosion resistance of nickel-phosphorus coatings on magnesium alloysKotland, Vojtěch January 2018 (has links)
This master’s thesis is focused on corrosion resistance of nickel-phosphorus coatings on magnesium alloy AZ91. In the theoretical part is summarized current knowledge about magnesium alloys and electroless deposition of Ni-P coatings including ongoing reactions. Theoretical part also lists all substances contained in the nickel bath and their specific use there. In the second half of theoretical part are discussed corrosion and immersion tests. Theoretical part is ended by review aimed towards the research in areas of immersion tests. Experimental part describes individual steps of pretreatment on magnesium alloy and then deposition of the Ni-P coating. Composition and morphology of deposited Ni-P coating and magnesium alloy were studied using energy dispersive spectroscopy. Experiment part also contains list of experiments trying to figure out ideal thickness of low-phosphorus coating which is able to protect magnesium alloy from corrosion. Master’s thesis is ended with the list of immersion tests and results which outcomes from them.
|
104 |
Electroless Copper Plating to Achieve Solderless ConnectionsNoren, Martin January 2021 (has links)
As the world has woken up to the change in climate in recent years, people's environmental concerns are forcing companies to change and find ways to manufacture products without harming nature. One area of serious concern is the electronics industries where an ever-increasing number of products gets updated with sensors and microcomputers to be part of the internet of things. Wen more things are upgraded with electronics, it's important that the production process is as environmentally friendly as possible and that the techniques used introduces a minimum amount of disturbance to the circuits in them. To tackle this problem, this thesis presents a novel way of manufacturing PCBs without the need for soldering components, a method that increases performance and has substantial environmental benefits. When comparing conventional soldering to the electroless copper plating process presented in this thesis, electroless copper plating uses 67 times less metal and also reduces the parasitic capacitance in the PCB that comes from the solder joints. Utilizing the solder-free method means 67 times less metal needs to be mined, transported, and recycled. Moreover, since lead is a toxic heavy metal that is often part of the solder, decreasing its use in the industry is beneficial for human health and the environment. Nowadays, when the world steadily moves toward products that use technologies like 5G, technologies where higher frequencies are required, their sensitivity to capacitive disturbances from parasitics increases. In this thesis, when comparing the conventional solder method to the non-solder method to attach a capacitor, a significant reduction in phase shift of 0.9° is measured; this change is directly related to the removal of the solder and the parasitic capacitance that comes with it.
|
105 |
Functionalization of particles and selective functionalization of surfaces for the electroless metal plating processMondin, Giovanni 28 November 2014 (has links)
Electroless plating is a metal deposition technique widely used in the coating industry. It is the method of choice to plate substrates with complex geometries and nonconductive surfaces, such as polymers and ceramics, since it is based on a chemical reduction in solution rather than on an external electrical energy source like the electroplating method. Among others, examples of well-established applications are the electroless deposition of decorative metal coatings such as gold and silver, wear and corrosion resistant nickel coatings, particularly to coat drive shafts, rotors, and bathroom fixtures, as well as the electroless deposition of copper in electronic devices as diffusion barriers and conductive circuit elements.
In the academic research, electroless plating is extensively used thanks to its low cost, simple equipment and versatility that allow rapid prototyping. Two common applications are the coating of small particles and the selective plating of flat surfaces. Metal coated ceramic particles are of enormous interest in many scientific fields, e.g. fluorescent diagnostics in biochemistry, catalysis, and fabrication of photonic crystals. Metal coated ceramic nanoparticles and microparticles are also gaining attention as potential candidates in the fabrication of higher quality metal matrix Composites, which is one of the applications addressed by this work. Metal coated ceramic particles are easier to integrate in metal matrix composites, avoiding aggregation caused by the low wettability of the particles by the matrix metal, and are potentially shielded from oxidation and undesired chemical reactions that take place at the interface between the particles and the metal Matrix.
Electroless plating is an autocatalytic process, meaning that the deposited metal atoms catalyze the deposition of further metal. In order to achieve the first stable metal seeds on a surface, the latter has to be functionalized. Without this functionalization the metal ions in the electroless plating bath are not reduced or are simply reduced to metal nanoparticles in solution. The traditional activation step for nonconductive surfaces is performed by immersion of the substrate in palladium based solutions, which is very time-consuming and extremely expensive. In particular for nanoparticles, previous work showed that at least 1015 Pd atoms/cm2 are required for a uniform activation of a surface, meaning that in the case of nanoparticles with a surface area of about 100 m2/g are necessary 6.4 g of palladium for each gram of substrate. Assuming a price of about 150 €/g (laboratory scale) for palladium nanoparticles and palladium precursors used for surface activation, it results that the activation of 1 g of nanoparticles costs around 1000 €.
Such costs are suboptimal considering the typical production scale, and therefore alternative functionalization methods are desired. In this work, new organic-based functionalization methods based on (3-mercaptopropyl)triethoxysilane to functionalize oxide particles, 3-aminopropylphosphonic acid to activate carbide particles and a substrate-independent method based on the bioinspired polydopamine are developed and investigated in detail, together with the respective electroless plating baths, which often have to be specifically tailored regarding the different reactivity of the different molecules and substrates. Furthermore, in the fabrication of metallic patterns on substrates by electroless plating, new, simple, and cost-effective activation and metal deposition processes are desired. In this work, two new methods are presented, one based on the printing of (3-mercaptopropyl)triethoxysilane by microcontact printing, the other based on the capillary force lithography of polymethylmethacrylate.
|
106 |
Study of Silver Deposition on Silicon (100) by IR Spectroscopy and Patina Formation Study of Oxygen Reduction Reaction on Ruthenium or PlatinumYang, Fan 08 1900 (has links)
To investigate conditions of silver electroless deposition on silicon (100), optical microscope, atomic force microscope (AFM) and attenuated total reflection infrared spectroscopy (ATR-FTIR) spectroscopy were used. Twenty second dipping in 0.8mM AgNO3/4.9% solution coats a silicon (100) wafer with a thin film of silver nanoparticles very well. According to AFM results, the diameter of silver particles is from 50 to 100nm. After deposition, arithmetic average of absolute values roughness (Ra) increased from ~0.7nm to ~1.2nm and the root mean square roughness (Rq) is from ~0.8nm to ~1.5nm. SCN- ions were applied to detect the existence of silver on silicon surface by ATR-FTIR spectroscopy and IR spectra demonstrate SCN- is a good adsorbent for silver metal. Patina is the general name of copper basic salts which forms green-blue film on the surface of ancient bronze architectures. Patina formation has been found on the surface of platinum or ruthenium after several scans of cyclic voltammetry in 2mM CuSO4/0.1M K2SO4, pH5 solution. Evidence implies that oxygen reduction reaction (ORR) triggers the patina formation. ORR is an important step of fuel cell process and only few sorts of noble metals like platinum can be worked as the catalyst of ORR. Mechanisms of patination involving ORR were investigated by cyclic voltammetry, optical microscope, AFM, rotating disk electrode and other experimental methods: the occurrence of ORR cause the increase of local pH on electrode, and Cu2+ ions prefer to form Cu2O by reduction. Patina forms while Cu2O is oxidizing back to Cu2+.
|
107 |
Electrochemical and Partial Oxidation of CH4Singh, Rahul 12 May 2008 (has links)
No description available.
|
108 |
Metallization of DNA and DNA Origami Using a Pd Seeding MethodGeng, Yanli 15 January 2013 (has links) (PDF)
In this dissertation, I developed a Pd seeding method in association with electroless plating, to successfully metallize both lambda DNA and DNA origami templates on different surfaces. On mica surfaces, this method offered a fast, simple process, and the ability to obtain a relatively high yield of metallized DNA nanostructures. When using lambda DNA as the templates, I studied the effect of Pd(II) activation time on the seed height and density, and an optimal activation time between 10 and 30 min was obtained. Based on the Pd seeds formed on DNA, as well as a Pd electroless plating solution, continuous Pd nanowires that had an average diameter of ~28 nm were formed with good selectivity on lambda DNA. The selected Pd activation time was also applied to metallize "T"-shape DNA origami, and Au coated branched nanostructures with a length between 200-250 nm, and wire diameters of ~40 nm were also fabricated. In addition, I found that the addition of Mg2+ ion into the reducing agent and electroless plating solution could benefit the surface retention of Pd seeded DNA and Au plated DNA structures. This work indicated that DNA molecules were promising templates to fabricate metal nanostructures; moreover, the formation of Au metallized branched nanostructures showed progress towards nanodevice fabrication using DNA origami. Silicon surfaces were also used as the substrates for DNA metallization. More complex circular circuit DNA origami templates were used. To obtain high enough seed density, multiple Pd seeding steps were applied which showed good selectivity and the seeded DNA origami remained on the surface after seeding steps. I used distribution analysis of seed height to study the effect of seeding steps on both average height and the uniformity of the Pd seeds. Four-repeated palladium seedings were confirmed to be optimal by the AFM images, seed height distribution analysis, and Au electroless plating results. Both Au and Cu metallized circular circuit design DNA origami were successfully obtained with high yield and good selectivity. The structures were maintained well after metallization, and the average diameters of Au and Cu samples were ~32 nm and 40 nm, respectively. Electrical conductivity measurements were done on these Au and Cu samples, both of which showed ohmic behavior. This is the first work to demonstrate the conductivity of Cu metallized DNA templates. In addition, the resistivities were calculated based on the measured resistance and the size of the metallized structures. My work shows promising progress with metallized DNA and DNA origami templates. The resulting metal nanostructures may find use as conducting interconnects for nanoscale objects as well as in surface enhanced Raman scattering analysis.
|
109 |
Fabrication of Ultrathin Palladium Composite Membranes by a New Technique and Their Application in the Ethanol Steam Reforming for H₂ ProductionYun, Samhun 25 April 2011 (has links)
This thesis describes a new technique for the preparation of ultrathin Pd based membranes supported on a hollow-fiber α-alumina substrate for H₂ separation. The effectiveness of the membranes is demonstrated in the ethanol steam reforming (EtOH SR) reaction in a membrane reactor (MR) for H₂ production.
The membrane preparation technique uses an electric-field to uniformly deposit Pd nanoparticle seeds on a substrate followed by deposition of Pd or Pd-Cu layers on the activated surface by electroless plating (ELP). The well distributed Pd nanoparticles allow for enhanced bonding between the selective layer and the substrate and the formation of gas tight and thermally stable Pd or Pd-Cu layers as thin as 1 µm, which is a record in the field. The best Pd membrane showed H₂ permeance as high as 5.0 × 10⁶ mol m²s⁻¹Pa⁻¹ and stable H²/N₂ selectivity of 9000 - 7000 at 733 K for 5 days. The Pd-Cu alloy membrane showed H₂ permeance of 2.5 × 10⁶ mol m⁻²s⁻¹Pa⁻¹ and H₂/N₂ selectivity of 970 at the same conditions.
The reaction studies were carried out with a Co-Na/ZnO catalyst both in a packed bed reactor (PBR) and in a MR equipped with the Pd or Pd-Cu membrane to evaluate the benefits of employing membranes. For all studies, ethanol conversion and hydrogen product yields were significantly higher in the MRs compared to the PBR. Average ethanol conversion enhancement and hydrogen molar flow enhancement were measured to be 12 % and 11 % in the Pd MR and 22 % and 19 % in the Pd-Cu MR, respectively. These enhancements of the conversion and product yield can be attributed to the shift in reaction equilibria by continuous hydrogen removal by the Pd based membranes. The comparative low enhancement in the Pd MR was found to be the result of significant contamination of Pd layer by CO or carbon compounds deposition during the reaction.
A one-dimensional modeling of the MR and the PBR was conducted using identical conditions and their performances were compared with the values obtained from the experimental study. The model was developed using a simplified power law and the predicted values matched experimental data with only minor deviations indicating that the model was capturing the essential physicochemical behavior of the system. Enhancements of ethanol conversion and hydrogen yield were observed to increase with rise in space velocity (SV), which could be explained by the increase in H₂ flux through the membranes with SV in the MRs. / Ph. D.
|
110 |
Metallisation and structuring of low temperature Co-fired ceramic for micro and millimetre wave applicationsRathnayake-Arachchige, Dilshani January 2015 (has links)
The recent developments in Low Temperature Co-fired Ceramic (LTCC) as a substrate material enable it to be used in the micro and millimetre wave range providing low dissipation factors at high frequencies, good dielectric properties and a high degree of integration for further miniaturised devices. The most common metallisation method used in LTCC technology is screen printing with high cost noble metals such as silver and gold that are compatible with the high sintering temperatures (850°C). However, these techniques require high capital cost and maintenance cost. As the commercial world requires convenient and low cost process technologies for mass production, alternative metallisation methods should be considered. As a result, electroless copper plating of fired LTCC was mainly investigated in this research. The main goals of this project were to carry out electroless plating of fired LTCC with sufficient adhesion and to extend the process to metallise closed LTCC channel structures to manufacture Substrate Integrated Waveguide (SIW) components. The objectives were focused on electroless copper deposition on fired LTCC with improved adhesion. Electroless deposits on the Sn/Pd activated LTCC surface showed poor adhesion without any surface pre-treatments. Hence, chemical etching of fired LTCC was carried out using concentrated NaOH solution. NaOH pre-treatment of LTCC led to the formation of flake like structures on the LTCC surface. A number of surface and chemical analysis techniques and weight measurements were used to investigate the mechanism of the modification of the LTCC surface. The results showed that the flake like structures were dispersed in the LTCC material and a material model for the LTCC structure was proposed. SEM EDX elemental mapping showed that the flake like structure consisted of aluminium, calcium, boron and oxygen. Further experiments showed that both the concentration of NaOH and the immersion time affect the surface morphology and the roughness of fired LTCC. The measured Ra values were 0.6 μm for untreated LTCC and 1.1 μm for the LTCC sample treated with 4M NaOH for 270 minutes. Adhesion tests including peel test and scratch test were carried out to examine the adhesion strength of the deposited copper and both tests indicated that the NaOH pre-treatment led to an improvement, with the best results achieved for samples treated with 4M NaOH. A second aspect of the research focused on the selective metallisation of fired LTCC. Excimer laser machining was used to pattern a resist film laminated on the LTCC surface. This process also roughened the substrate and created channels that were characterised with respect to the laser operating parameters. After patterning the resist layer, samples were activated using Sn/Pd catalyst solution followed by the electroless copper deposition. Electroless copper was selectively deposited only on the patterned LTCC surface. Laser parameters clearly affected the copper plating rate. Even with a similar number of shots per area, the tracks machined with higher repetition rate showed relatively more machining depth as well as good plating conditions with low resistance values. The process was further implemented to realize a complete working circuit on fired LTCC. Passive components including a capacitor and an inductor were also fabricated on LTCC using the mask projection technique of the excimer laser system. This was successful for many designs, but when the separation between conductor lines dropped below 18 μm, electroless copper started to deposit on the areas between them. Finally, a method to deposit copper films on the internal walls of closed channel structures was developed. The method was first demonstrated by flowing electroless copper solutions through silane treated glass capillaries. A thin layer (approx. 60 nm) of electroless copper was deposited only on the internal walls of the glass capillaries. The flow rate of the electroless copper solution had to be maintained at a low level as the copper deposits tended to wash away with higher flow rates. The structures were tested for transmission losses and showed low (<10dB) transmission losses in the terahertz region of the electromagnetic spectrum. The process was further applied to deposit electroless copper on the internal walls of the LTCC closed channel structures to manufacture a LTCC Substrate Integrated Waveguide (SIW).
|
Page generated in 0.0406 seconds