• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 236
  • 38
  • 35
  • 19
  • 15
  • 13
  • 8
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 474
  • 130
  • 82
  • 74
  • 67
  • 63
  • 57
  • 50
  • 49
  • 48
  • 47
  • 41
  • 33
  • 31
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

New approaches for cofactor recycling : application to chemical synthesis and electrochemical devices

Reeve, Holly A. January 2015 (has links)
The work in this Thesis addresses the challenges associated with using redox enzymes for chemical synthesis. The use of enzymes as catalysts in the synthesis of fine chemicals is becoming more wide spread, in part due their ability to catalyse reactions with incredible selectivity under relatively mild conditions. In particular, enzymes are useful for selective reduction of ketones to enantiomerically pure alcohols or amines, and partial oxidations of alkanes to alcohols. However, a key limitation to exploiting redox enzymes in these reaction pathways is the requirement for a specialised electron source, usually the expensive nicotinamide cofactors NADH or NADPH. Existing cofactor regeneration methods use a second enzyme with a sacrificial substrate which is oxidised to generate a stoichiometric waste product; this complicates isolation of the desired product and prevents the environmental benefits of biocatalysis from being fully realised. In order to provide clean and efficient biocatalytic routes, improved recycling methods for these cofactors are crucial. This Thesis develops two novel methods for in situ cofactor recycling. The first is an electro-enzymatic system; an NAD<sup>+</sup>-reductase enzyme is shown to use electrons directly from an electrode for supply of NADH to a co-immobilised cofactor-dependent enzyme. The second uses a hydrogenase, NAD<sup>+</sup> reductase and cofactor-dependent enzyme immobilised on conducting particles for H<sub>2</sub>-driven NADH regeneration. This relies on the thermodynamically favourable reduction of NAD<sup>+</sup> by H<sub>2</sub> when the hydrogenase and NAD<sup>+</sup>-reductase are in electronic contact, provided by the conducting particle. The electro-enzymatic approach to NAD<sup>+</sup> reduction is then adapted for electrochemical devices; an enzyme catalysed fuel cell and a self-powered biosensor were considered.
312

Algorithm development in computational electrochemistry

Cutress, Ian James January 2011 (has links)
This thesis presents algorithm development in computational chemistry, and applies new computer science concepts to voltammetric simulation. To begin, this thesis discusses why algorithm development is necessary, and inherent problems found in commercial simulation solvers. As a result of this discussion, this thesis describes the need for simulators to keep abreast of recent computational developments. Algorithm development in this thesis is taken through stages. Chapter 3 applies known theory relating to the stripping voltammetry at a macroelectrode to the diffusional model of a microdisk, using finite difference and alternating direction implicit simulation techniques. Chapter 4 introduces the concept of parallel computing, and how computational hardware has developed recently to take advantage of out-of-order calculations, by processing them in parallel to reduce simulation time. The novel area of graphics card simulation for highly parallel algorithms is also explained in detail. Chapter 5 discusses the adaptation of voltammetric finite difference algorithms to a purely parallel format for simulation by explicit solution. Through explicit solution, finite difference algorithms are applied to electrode geometries which necessitate a three-dimensional solution – elliptical electrodes; square, rectangular, and microband electrodes; and dual microdisk electrodes in collector-generator mode. Chapter 6 introduces 'Random Walk' simulations, whereby individual particles in the simulation are modelled and their trajectories over time are calculated. The random walk technique in this thesis is improved for pure three-dimensional diffusion, and adapted to graphics cards, allowing up to a factor 4000 increase in speed over previous computational methods. This method is adapted to various systems of low concentration confined voltammetry (chapter 6.4) and single molecule detection, ultra low concentration cyclic voltammetry (chapter 6.5), and underpotential deposition of thallium on mobile silver nanoparticles (chapter 6.6). Overall, this thesis presents, and applies, a series of algorithm development concepts in computational electrochemistry.
313

Advances in the theory of electrochemical methods

Streeter, Ian January 2008 (has links)
This thesis is concerned with dynamic electrochemistry experiments in which faradaic processes are driven by the application of potential to an electrode immersed in an electrolyte solution. In particular, experimental methods are considered which could be used to study electrochemical systems in a more informative way if the processes occurring at the electrode were better understood. The work develops the theoretical models which describe these experiments, and details the approximations made in each model and the conditions under which they are appropriate. Numerical simulations are reported which demonstrate how the models can be used to infer quantitative details of chemical behaviour from experimentally recorded data. The first system studied in detail is linear sweep voltammetry at a microband electrode array. The diffusional behaviour of an electroactive species is shown to depend on the configuration of the microband array and on the potential scan rate used. Details are given on how experimental conditions can be optimised for the study of electrochemical systems. The next area of work develops the theory of nanoparticle-modified electrodes. Experiments are considered in which an electron transfer reaction is catalysed only at the site of the nanoparticles, whilst the supporting planar electrode remains electrochemically inert. Numerical simulations show how the current measured at these modified electrodes depends on the size and shape of the particles, on the distribution of the particles on the electrode surface, and on the timescale of the experiment. The final theme of work is on electrochemical experiments in poorly conducting solutions. A theoretical model is developed which takes into account the effects of an electric field on the mass transport of electroactive species and on the charge transfer kinetics at the electrode. The model is then used to rationalise the unusual current behaviour that is observed in the anodic stripping of thallium from an amalgam.
314

Electrochemical investigations of H2-producing enzymes

Goldet, Gabrielle January 2009 (has links)
Hydrogenases are a family of enzyme that catalyses the bidirectional interconversion of H<sup>+</sup> and H<sub>2</sub>. There are two major classes of hydrogenases: the [NiFe(Se)]- and [FeFe]-hydrogenases. Both of these benefit from characteristics which would be advantageous to their use in technological devices for H<sub>2</sub> evolution and the generation of energy. These features are explored in detail in this thesis, with a particular emphasis placed on defining the conditions that limit the activity of hydrogenases when reducing H<sup>+</sup> to produce H<sub>2</sub>. Electrochemistry can be used as a direct measure of enzymatic activity; thus, Protein Film Electrochemistry, in which the protein is adsorbed directly onto the electrode, has been employed to probe catalysis by hydrogenases. Various characteristics of hydrogenases were probed. The catalytic bias for H<sub>2</sub> production was interrogated and the inhibition of H<sub>2</sub> evolution by H<sub>2</sub> itself (a major drawback to the use of some hydrogenases in technological devices to produce H<sub>2</sub>) was quantified for a number of different hydrogenase. Aerobic inactivation of hydrogenases is also a substantial technological limitation; thus, inactivation of both H<sub>2</sub> production and H<sub>2</sub> oxidation by O<sub>2</sub> was studied in detail. This was compared to inhibition of hydrogenases by CO so as to elucidate the mechanism of binding of diatomic molecules and determine the factors limiting inactivation. This allows for a preliminary proposal for the genetic redesigning of hydrogenases for biotechnological purposes to be made. Finally, preliminary investigation of the binding of formaldehyde, potentially at a site integral to proton transfer, opens the field for further research into proton transfer pathways, the structural implications thereof and their importance in catalysis.
315

Development of enzymatic H2 production and CO2 reduction systems

Woolerton, Thomas William January 2012 (has links)
One of today’s most pressing scientific challenges is the conception, development and deployment of renewable energy technologies that will meet the demands of a rapidly increasing population. The motivation is not only dwindling fossil fuel reserves, but also the necessary curtailment of emissions of the greenhouse gas carbon dioxide (a product of burning fossil fuels). The sun provides a vast amount of energy (120,000 TW globally), and one major challenge is the conversion of a fraction of this energy into chemical energy, thereby allowing it to be stored. Dihydrogen (H₂) that is produced from water is an attractive candidate to store solar energy (a ‘solar fuel’), as are high energy carbon-containing molecules (such as CO) that are formed directly from carbon dioxide. One key aspect is the development of catalysts that are able to offer high rates and efficiencies. In biology, some microbes acquire energy from the metabolism of H₂ and CO. The biological catalysts - enzymes - that are responsible are hydrogenases (for the oxidation of H₂ to protons); and carbon monoxide dehydrogenases (CODHs, for the oxidation of CO to CO₂). These redox enzymes, containing nickel and iron as the only metals, are extraordinary in terms of their catalytic characteristics: many are fully reversible catalysts and offer very high turnover frequencies (thousands per second are common), with only tiny energy input requirements. This Thesis uses a hydrogenase from the bacterium Escherichia coli, and two CODHs from the bacterium Carboxydothermus hydrogenoformans, as the catalysts in H2 production and CO₂ reduction systems. Chapter 3 describes the concept and development not of a solar fuel system, but of a device that catalyses the water-gas shift reaction (the reaction between CO and water to form H₂ and CO₂) - a process of major industrial importance for the production of high purity H₂. Chapters 4, 5 and 6 detail photochemical CO₂ reduction systems that are driven by visible light. These systems, operating under mild, aqueous conditions, involve CODHs attached either to TiO₂ nanoparticles that are sensitised to visible light by the co-attachment of a ruthenium-based dye complex, or to cadmium sulfide nanomaterials that, having a narrow band gap, are inherently photoexcitable by visible light. The motivation here is not the construction of technological devices; indeed, the enzymes that are used are fragile, highly sensitive to oxygen, and impossible to scale to industrial levels. Rather, the drivers are those of scientific curiosity (can the incorporation of these remarkable biological catalysts enable the creation of outstanding solar fuel devices?), and of producing systems that serve as benchmarks and inspiration for the development of fully synthetic systems that are robust and scalable.
316

Weakly supported voltammetry

Limon Petersen, Juan Gualberto January 2010 (has links)
This thesis is concerned with dynamic electrochemical experiments with different concentrations of supporting electrolyte. Normally supporting electrolyte is added to a solution in order to avoid undesirable effects as migration and potential drop in solution. However, in the present thesis we focus on the study and understanding of such effects as the concentration of supporting electrolyte decreases. First a theoretical treatment is proposed, based on numerical simulation using the Nernst-Planck- Poisson system of equations. The theoretical treatment is compared with previous works as electroneutrality, the differences between both models are explained. The model is also compared with theoretical results to validate the theoretical treatment. Experimental results of chronoamperometry and cyclic voltammograms are compared with theoretical results obtaining remarkable agreement. Is noteworthy that to the best of the author’s knowledge this is the first time that experimental dynamic voltammetry under weakly supported conditions has been successfully modeled by a theoretical treatment. The electrochemical reaction of a non-charged electroactive species is presented for the system ferrocene/ferrocenium in acetonitrile in which the oxidized and reduced species are soluble in solution, the reaction is studied at different concentrations of supporting electrolyte. Comparison is presented between theoretical simulations and experimental results, for which potential drop in solution is studied. Then systems involving charged electroactive species are treated, in these cases the decrease of supporting electrolyte influence the mass transport of the electroactive species due to migration, comparison between different experimental systems as hexaammineruthenium (III)/(II), cobaltoceniun/cobaltocene and hexacyanoferrate (III)/(II) are presented in comparison with theoretical simulations. More complex mechanistic paths are also investigated, such as deposition and stripping, in which it is established that the level of support required to achieve ‘diffusion only’ voltammetry is on dependence of the concentration of amalgamated electroactive species prior to the stripping step. Comparison between theoretical simulation and experimental results of the deposition and stripping of thallium at a mercury hemisphere are presented, and found to be in good agreement for either chronoamperometry and cyclic voltammetry Simulations are also presented showing the necessary required amount of supporting electrolyte required to achieve ‘diffusion only’ cyclic voltammetry. This is obtained by comparison between diffusion only software and the simulation described in the present thesis. The required amount of supporting electrolyte is shown to depend on the concentration of the electroactive species and supporting electrolyte in the media, the electrode radius, the diffusion coefficient of species and the scan rate. Finally, the cyclic voltammetry in weakly supporting media is used to obtain mechanistic information, by using the migration of electroactive species to differentiate the mass transport of electroactive species to the electrode. The two single electron reductions of anthraquinone in acetonitrile is presented, and the comproportionation mechanistic path is observed in weakly supported media, diffusion only voltammetry is normally unable to present whether this mechanism path takes place, due to the similarity in diffusion coefficients of the electroactive species. In contrast in weakly support conditions the diffusion controlled comproportionation mechanistic path is observed experimentally and constraints for the rate constant are discussed.
317

QSPR a elektrochemická oxidace derivátů N-benzylsalicylthioamidů / QSPR and Electrochemical Oxidation of N-benzylsalicylthioamides

Kohoutová, Petra January 2013 (has links)
The study of the substituent effect on the voltammetric behaviour of newly synthesized N benzyl-salicylthioamides and the preparation and identification of products of their electrooxidation were the aims of this thesis. The voltametric characteristics were measured by DC voltammetry on a rotating disc electrode in a non-aqueous media. Using QSER, the effect of substituents on the anodic half wave potential was quantified, and statistically valid correlation equations were obtained. The influence of reaction media on the compounds electrooxidation was also studied. Using preparative electrolysis, the electrooxidation products of two selected N benzylsalicylthioamides were obtained. The one (structurally similar) product was identified in both cases. The following general scheme of electrochemical oxidation of N-benzylsalicylthioamides studied was proposed: the electrooxidation starts on sulphur atom by elimination of electrons, followed by translocation of charge on nitrogen atom, then hydrogen sulphite is eliminated, and a new ring is closed between two molecules of appropriate N-benzylsalicylthioamide.
318

Couplage de la fermentation sombre et de l’électrolyse microbienne pour la production d’hydrogène : formation et maintenance du biofilm électro-actif / Coupling dark fermentation and microbial electrolysis for hydrogen production : process and mecanisms occuring during formation and conservation of electroactive biofilm

Pierra, Mélanie 06 December 2013 (has links)
L'hydrogène, qui constitue une solution alternative et durable à l’usage d’énergies fossiles, est produit essentiellement par reformage de combustibles fossiles (95%). Des filières de production plus soucieuses de l'environnement sont envisagées. Deux familles de technologies sont explorées: 1) par décomposition thermochimique ou électrochimique de l'eau et 2) à partir de différentes sources de biomasse. Parmi celles-ci, les cellules d'électrolyse microbienne ou «Microbial electrolysis cell (MEC)» permettent de produire de l'hydrogène par électrolyse de la matière organique. Une MEC consiste en une cathode classique qui assure la production d'hydrogène par la réduction électrochimique de l'eau, associée à une bioanode qui oxyde des substrats organiques en dioxyde de carbone. Ce processus d'oxydation n'est possible que grâce au développement sur l'anode d'un biofilm microbien électroactif qui joue le rôle d'électro-catalyseur. Par rapport aux procédés courants d'électrolyse de l'eau, une MEC requière un apport énergétique 5 à 10 fois plus faibles. En outre, les procédés « classiques » de production de bio-hydrogène par voie fermentaire en cultures mixtes convertissent des sucres avec des rendements limités à 2-3 moles d'hydrogène par mole d'hexose tout en coproduisant des acides organiques. Alimenté par de l'acétate, une MEC produit au maximum 3 moles d'hydrogène/mole d'acétate. Le couplage de la fermentation à un procédé d'électrolyse microbienne pourrait donc produire de 8 à 9 moles d'hydrogène/mole d'hexose, soit un grand pas vers la limite théorique de 12 moles d'hydrogène/mole d'hexose. L'objectif de cette thèse est d'analyser les liens entre la structure des communautés microbiennes dans les biofilms électroactifs et en fermentation, les individus qui les composent et les fonctions macroscopiques (électroactivité du biofilm, production d'hydrogène) qui leur sont associées dans des conditions permettant de réaliser le couplage des deux procédés. L'originalité de cette étude a été de travailler en milieu salin (30-35 gNaCl/L), favorable au transport de charges dans l'électrolyte de la MEC. Dans un premier temps, la faisabilité de la fermentation en conditions salines (3-75 gNaCl/L) a été démontrée en lien avec l'inhibition de la consommation de l'hydrogène produit et une forte prédominance d'une nouvelle souche de Vibrionaceae à des concentrations en sel supérieures à 58 gNaCl/L. D'autre part, la mise en œuvre de biofilms électroactifs dans des conditions compatibles avec la fermentation sombre a permis la sélection d'espèces dominantes dans les biofilms anodiques et présentant des propriétés électroactives très prometteuses (Geoalkalibacter subterraneus et Desulfuromonas acetoxidans) jusqu'à 8,5 A/m². En parallèle, la sélection microbienne opérée lors d'une méthode d'enrichissement utilisée pour sélectionner ces espèces à partir d'une source d'inoculum naturelle sur leur capacité à transférer leurs électrons à des oxydes de Fer(III) a été étudiée. Une baisse des performances électroactives du biofilm liée à une divergence de sélection microbienne dans ces deux techniques de sélection mène à limiter le nombre de cycle d'enrichissement sur Fer(III). Cependant, l'enrichissement sur Fer(III) reste une alternative efficace de pré-selection d'espèces électroactives qui permet une augmentation de rendement faradique de 30±4% à 99±8% par rapport au biofilm obtenu avec un inoculum non pré-acclimaté. Enfin, l'ajout d'espèces exogènes issues de la fermentation sombre sur le biofilm électroactif a révélé une baisse de l'électroactivité du biofilm se traduisant par une diminution de la densité de courant maximale produite. Cette baisse pourrait s'expliquer par à une diminution de la vitesse de transfert du substrat due à un épaississement apparent du biofilm. Cependant, un maintien de sa composition microbienne et de la quantité de biomasse laisse supposer une production d'exopolymères (EPS) dans le biofilm en situation de couplage. / Nowadays, alternative and sustainable solutions are proposed to avoid the use of fossil fuel. Hydrogen, which constitutes a promising energy vector, is essentially produced by fossil fuel reforming (95%). Environmentally friendly production systems have to be studied. Two main families of technologies are explored to produce hydrogen: 1) by thermochemical and electrochemical decomposition of water and 2) from different biomass sources. Among those last ones, microbial electrolysis cells (MEC) allow to produce hydrogen by electrolysis of organic matter. A MEC consists in a classical cathode, which provides hydrogen production by electrochemical reduction of water, associated to a bio-anode that oxidizes organic substrates into carbon dioxide. This process is only possible because of the anodic development of an electroactive microbial biofilm which constitutes an electrocatalyst. In comparison to classical water electrolysis process, a MEC requires 5 to 10 times less electrical energy and therefore reduces the energetic cost of produced hydrogen. Furthermore, classical process of dark fermentation in mixed cultures converts sugars (saccharose, glucose) to hydrogen with a limited yield of 2-3 moles of hydrogen per mole of hexose because of the coproduction of organic acids (mainly acetic and butyric acids). Fed with acetate, a MEC can produce up-to 3 moles of hydrogen per mole of acetate. Therefore, the association of these two processes could permit to produce 8 to 9 moles of hydrogen per mole of hexose, which represents a major step toward the theoretical limit of 12 moles of hydrogen per mole of hexose.Therefore, this work aims at analyzing the relationship between microbial community structures and compositions and the associated macroscopic functions (biofilm electroactive properties, hydrogen production potential) in electroactive biofilms and in dark fermentation in conditions allowing the coupling of the two processes. The originality of this study is to work in saline conditions (30-35 gNaCl/L), which favors the charges transfer in the MEC electrolyte.First of all, feasibility of dark fermentation in saline conditions (3-75 gNaCl/L) has been shown. This was linked to an inhibition of produced hydrogen consumption and the predominance of a new Vibrionaceae species at salt concentrations higher than 58 gNaCl/L. Secondly, electroactive biofilm growth in conditions compatibles to dark fermentation (pH 5.5-7 and fed with different organic acids) allowed to select dominant microbial species in anodic biofilms that present promising electroactive properties (Geoalkalibacter subterraneus and Desulfuromonas acetoxidans) with maximum current densities up to 8.5 A/m². In parallel, the microbial selection occurring during iron-reducing enrichment method used to select species from a natural inoculum source and based on their capacity to transfer electrons to iron oxydes (Fe(III)) has been studied. A decrease of electroactive performances of the biofilm linked to the divergence of microbial selection led to a limitation of the number of iron-enrichment steps. However, enrichment on Fe(III) presents an efficient alternative to pre-select electroactive species with an increase of coulombic efficiency from 30±4% to 99±8% in comparison with a biofilm obtained with a non-acclimated inoculum. Finally, the addition of exogenous bacteria from a dark fermenter on the electroactive biofilm revealed a decrease of electroactivity with a decrease of maximum current density produced. This diminution could be explained by a lower substrate transfer due to an apparent thickening of the biofilm. Nevertheless, the stability of microbial composition and of bacterial quantity on the anode suggests that a production of exopolymers (EPS) occurred.
319

Three-dimensional structured carbon foam : synthesis and applications

Pham, Ngoc Tung January 2016 (has links)
Recently, due to the unique properties and structures such as large geometric surface area, electrical conductivity and light weight, 3D structured carbon materials have been attracting extensive attention from scientists. Moreover, the materials, which can provide well-defined pathways for reactants to easily access active sites, are extremely useful for energy conversion as well as environmental and catalysis applications. To date, many precursors have been used for fabrication of 3D structured carbon materials including pitch, carbon nanotubes, graphene, and polymer foams. This thesis, as shown in the thesis title, focus on two main aspects: the study of the characteristics of melamine based carbon foam synthesized at different conditions and their applications. In paper I, it was revealed that through a simple, one-step pyrolysis process, flexible carbon foam synthesized from melamine foam (BasotectÒ, BASF) was obtained. Additionally, through a pyrolysis-activation process, activated carbon foam which possesses hydrophilic nature and high surface area was successfully synthesized. The characteristics of carbon foam such as the hydrophobic/hydrophilic nature, electrical conductivity, mechanical properties and surface chemistry were studied. It was shown that carbon foam could be successfully used as an absorbent in environmental applications e.g. removing of spill oil from water (paper I) or as support for heterogeneous catalysts, which in turn was used not only in gas phase reactions (paper I and IV) but also in an aqueous phase reaction (paper II). Importantly, when combined with a SpinChem® rotating bed reactor (SRBR) (paper II), the monolithic carbon foam/SRBR system brought more advantages than using the foam alone. Additionally, the work in paper III showed the potential of carbon foam in an energy conversion application as anode electrode substrate in alkaline water electrolysis. In summary, the versatility of the carbon foam has been proven through abovementioned lab scale studies and due to the simple, scalable and cost effective pyrolysis and activation processes used for the production, it has potential to be used in large-scale applications.
320

Membranes ionomères renforcées par des nanofibres obtenues par électrofilage pour piles à combustible et l'électrolyseur / Ionomer membranes reinforced with electrospun nanofibres for fuel cell and electrolysis applications

Giancola, Stefano 16 December 2016 (has links)
La production de membranes échangeuses de protons (PEM) robustes et présentant une conductivité élevée est essentielle pour le développement à grande échelle de dispositifs de stockage et de conversion de l’énergie tels que les piles à combustible (PEMFC) et les électrolyseurs (PEMWE). Ces travaux de thèse portent sur la préparation et la caractérisation de membranes composites préparées à partir d’acide perfluorosulfonique, à chaine latérale courte (SSC-PFSA), de type Aquivion®, et de fibres de polymères obtenues par filage électrostatique. Cette dernière technique permet de préparer des matériaux fibreux à porosité élevée, caractérisés par la présence de fibres de diamètres sub-micrométriques, et pouvant être utilisés comme renfort mécanique des membranes ionomères. Le polysulfone a été retenu comme constituant des fibres étant donné ses stabilités mécanique et chimique élevées d’une part et pour la possibilité de modifier ses propriétés physico-chimiques par fonctionnalisation, d’autre part. Ces membranes comportant une distribution homogène des nanofibres dans toute leur épaisseur ont été préparées à partir d’un procédé d’imprégnation Des membranes renforcées, Aquivion®-PSU, basées sur un PFSA dont le poids équivalent (EW) varie entre 700 et 870 g.mol-1 et dont la concentration massique de fibres varie entre 5 et 18 %, ont été préparées. Les membranes renforcées sont caractérisées par des faibles gonflements volumique et surfacique et par une rigidité plus élevée en comparaison des membranes non renforcées de même EW. La perméabilité a l’hydrogène a engluement été réduite. Les améliorations en terme de propriétés mécaniques et dimensionnelles n’ont pas amené à une diminution significatif de la conductivité protonique, qui été maintenue aux mêmes valeurs des membranes non renforcée. Les assemblage membrane-électrode (AME) préparés à partir de ces membranes composites ont montré des caractéristiques i/V intéressantes et prometteuses (1.76 V à 2 A/cm²).Des Polysulfones fonctionnalisés avec le 1,2,3 triazole portant des groupements alkyle ou aryle ont été préparés par une voie de synthèse rapide et a haute rendement assistée par micro-ondes. Les nanofibres electrofilées de PSU fonctionnalisé avec le 4-ethyl-1,2,3-triazole (PSUT), avec un degré de fonctionnalisation en espèce triazole de 0.3 et 0.9 par unité répétitive de PSUT ont été intégrées à une matrice Aquivion®. L’objectif de ces travaux est d’améliorer la stabilité mécanique des membranes composites à partir des interactions acido-basiques PFSA-PSUT (réticulation ionique). Les membranes Aquivion®-PSUT sont caractérisées par une rigidité, une dureté et une ductilité plus élevées en comparaison des membranes Aquivion® renforcées par les fibres de PSU non fonctionnalisées. Une diminution du gonflement volumique et surfacique a également été observée sans perte de la conductivité jusqu’à une concentration massique de fibres de 12 %. Les AME préparés à partir de membranes renforcées Aquivion®-PSUT (12%) sont caractérisés par les mêmes propriétés courant/tension, en monocellule de pile à combustible fonctionnant à 80 °C et 100 % d’humidité relative, que ceux préparés à partir d’Aquivion®. / The preparation of highly proton conducting and durable proton exchange membranes (PEM) for low temperature fuel cells (PEMFC) and electrolysers (PEMWE) is crucial for the large scale application of these energy conversion/storage devices. This PhD thesis focuses on the preparation and characterisation of composite membranes based on highly conducting Aquivion® short side chain perfluorosulfonic acid (PFSA) and polymer fibres obtained by electrospinning. This technique allows the preparation of highly porous mats of fibres with sub-micrometric diameters that can act as an efficient mechanical reinforcement for ionomer membranes. The chosen polymer is the mechanically robust and chemically stable polysulfone (PSU), which can also been functionalised to modify its physico-chemical properties. Reinforced PEM with fibres homogeneously dispersed through the entire membrane cross-section have been realised by a fast and efficient impregnation process.Aquivion®-PSU reinforced membranes based on PFSA with equivalent weight (EW) ranging from 700 to 870 g mol-1 and fibre loading ranging from 5 to 18 wt% have been prepared. They showed reduced volume and area swelling and higher stiffness with respect to non-reinforced membranes with the same EW. The hydrogen crossover was also reduced. The improvement in mechanical and dimensional properties was not detrimental for the in-plane proton conductivity that was kept at the same value of non-reinforced membranes. Membrane-electrode assemblies (MEA) based on these composite PEM show promising i/V characteristics in PEMWE (1.76 V at 2 A cm-2).Polysulfones functionalised with 1,2,3-triazole bearing alkyl and aryl ring substituents have been synthesized by a fast and high-yield chemical route involving the azide-alkyne cycloaddition reaction assisted by microwaves as last step. Electrospun nanofibers of polysulfone functionalised with 4-epthyl-1,2,3-triazole (PSUT) with a degree of functionalisation of 0.3 and 0.9 triazole moiety per PSUT repeat unit have been embedded into the Aquivion® matrix. The aim of this study was to further improve the mechanical properties of the membrane by PFSA-PSUT acid-base interactions (ionic crosslinking). Aquivion®-PSUT membranes showed enhanced mechanical stiffness, toughness and ductility with respect to Aquivion® membranes reinforced with the non-functionalised polymer with the same EW and fibre loading. Reduced volume and area swelling have also been observed with no drop of proton conductivity until a fibre loading of (12 wt%). MEA based on Aquivion®-PSUT reinforced membrane with 12 wt% fibre loading showed identical fuel cell polarisation curve with respect to a MEA based on Aquivion® at 80 °C and 100 % of relative humidity (RH).

Page generated in 0.0628 seconds