Spelling suggestions: "subject:"electromagnetic""
521 |
The Feasibility of Using Computational Electromagnetic Modelling for the Study of Backscatter from Marine IceTrembinski, Richard 20 December 2018 (has links)
Current marine navigation radars are capable of high-resolution imagery of marine ice but are not able to classify the marine ice. Classifying marine ice means identifying the ice as first-year ice, multi-year ice or glacier ice. The latter two ice types are as hard as concrete and capable of damaging even ice hardened vessels such as icebreakers. The Canadian Coast Guard has identified the ability of marine navigation radars to classify marine ice as the single greatest improvement to be made in the safety of Arctic navigation.
This thesis presents new research that improves our understanding of electromagnetic backscatter from marine ice. The goal of this work was two-fold: to demonstrate the feasibility of using commercial computational electromagnetic modelling software to simulate real-world marine ice targets, and to identify an optimum frequency or range of frequencies at which the marine ice targets can be definitively classified.
Engineering models for scattering from electrically large objects made of a highly variable, complex, heterogenous, three-phase mixture of ice, air and brine are developed. To do so, an extensive literature review of the Arctic environment, and the physical and electrical properties of marine ice, is conducted to distill the required geophysical parameters of the three marine ice types of interest in this work. Using well-established dielectric mixing theory, these parameters are applied to homogenize the marine ice and model the target (in the presence of a flat sea halfspace) using a surface integral equation formulation. To reduce the computational resources required to numerically solve the integral equation models using the method of moments, computational electromagnetic modelling studies are conducted to select a suitable seawater halfspace representation and determine if the properties of larger objects can be inferred from scaled down models of the object.
A case study is presented for backscatter from marine ice from 6 to 10 GHz, which explores the effects of frequency on the co- and cross-polarized backscatter intensity (and hence the apparent radar cross-section) of the three marine ice types of interest. Good agreement is found between the co- and cross-polarized backscatter intensity responses found from the engineering model computations and some existing experimental data from real-world marine ice targets.
This work: (a) proves the feasibility of using computational electromagnetic modelling to simulate real-world marine ice targets, providing a new, cost-effective method for the study of backscatter from marine ice; (b) confirms the viability of using cross-polarization as a method of classification; and (c) identifies 10 to 16 GHz as a potential optimal frequency range for the classification of marine ice using dual-polarization radar.
|
522 |
Radiation Detection and Imaging: Neutrons and Electric FieldsJanuary 2015 (has links)
abstract: The work presented in this manuscript has the overarching theme of radiation. The two forms of radiation of interest are neutrons, i.e. nuclear, and electric fields. The ability to detect such forms of radiation have significant security implications that could also be extended to very practical industrial applications. The goal is therefore to detect, and even image, such radiation sources.
The method to do so revolved around the concept of building large-area sensor arrays. By covering a large area, we can increase the probability of detection and gather more data to build a more complete and clearer view of the environment. Large-area circuitry can be achieved cost-effectively by leveraging the thin-film transistor process of the display industry. With production of displays increasing with the explosion of mobile devices and continued growth in sales of flat panel monitors and television, the cost to build a unit continues to decrease.
Using a thin-film process also allows for flexible electronics, which could be taken advantage of in-house at the Flexible Electronics and Display Center. Flexible electronics implies new form factors and applications that would not otherwise be possible with their single crystal counterparts. To be able to effectively use thin-film technology, novel ways of overcoming the drawbacks of the thin-film process, namely the lower performance scale.
The two deliverable devices that underwent development are a preamplifier used in an active pixel sensor for neutron detection and a passive electric field imaging array. This thesis will cover the theory and process behind realizing these devices. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2015
|
523 |
Fast Numerical Algorithms for 3-D Scattering from PEC and Dielectric Random Rough Surfaces in Microwave Remote SensingJanuary 2016 (has links)
abstract: We present fast and robust numerical algorithms for 3-D scattering from perfectly electrical conducting (PEC) and dielectric random rough surfaces in microwave remote sensing. The Coifman wavelets or Coiflets are employed to implement Galerkin’s procedure in the method of moments (MoM). Due to the high-precision one-point quadrature, the Coiflets yield fast evaluations of the most off-diagonal entries, reducing the matrix fill effort from O(N^2) to O(N). The orthogonality and Riesz basis of the Coiflets generate well conditioned impedance matrix, with rapid convergence for the conjugate gradient solver. The resulting impedance matrix is further sparsified by the matrix-formed standard fast wavelet transform (SFWT). By properly selecting multiresolution levels of the total transformation matrix, the solution precision can be enhanced while matrix sparsity and memory consumption have not been noticeably sacrificed. The unified fast scattering algorithm for dielectric random rough surfaces can asymptotically reduce to the PEC case when the loss tangent grows extremely large. Numerical results demonstrate that the reduced PEC model does not suffer from ill-posed problems. Compared with previous publications and laboratory measurements, good agreement is observed. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2016
|
524 |
Holographic Metasurface Leaky Wave AntennasJanuary 2017 (has links)
abstract: Articially engineered two-dimensional materials, which are widely known as
metasurfaces, are employed as ground planes in various antenna applications. Due to
their nature to exhibit desirable electromagnetic behavior, they are also used to design
waveguiding structures, absorbers, frequency selective surfaces, angular-independent
surfaces, etc. Metasurfaces usually consist of electrically small conductive planar
patches arranged in a periodic array on a dielectric covered ground plane. Holographic
Articial Impedance Surfaces (HAISs) are one such metasurfaces that are capable of
forming a pencil beam in a desired direction, when excited with surface waves. HAISs
are inhomogeneous surfaces that are designed by modulating its surface impedance.
This surface impedance modulation creates a periodical discontinuity that enables a
part of the surface waves to leak out into the free space leading to far-eld radia-
tion. The surface impedance modulation is based on the holographic principle. This
dissertation is concentrated on designing HAISs with
Desired polarization for the pencil beam
Enhanced bandwidth
Frequency scanning
Conformity to curved surfaces
HAIS designs considered in this work include both one and two dimensional mod-
ulations. All the designs and analyses are supported by mathematical models and
HFSS simulations. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2017
|
525 |
Skin Tissue Terahertz Imaging for Fingerprint BiometricsJanuary 2017 (has links)
abstract: Fingerprints have been widely used as a practical method of biometrics authentication or identification with a significant level of security. However, several spoofing methods have been used in the last few years to bypass fingerprint scanners, thus compromising data security. The most common attacks occur by the use of fake fingerprint during image capturing. Imposters can build a fake fingerprint from a latent fingerprint left on items such as glasses, doorknobs, glossy paper, etc. Current mobile fingerprint scanning technology is incapable of differentiating real from artificial fingers made from gelatin molds and other materials. In this work, the adequacy of terahertz imaging was studied as an alternative fingerprint scanning technique that will enhance biometrics security by identifying superficial skin traits. Terahertz waves (0.1 – 10 THz) are a non-ionizing radiation with significant penetration depth in several non-metallic materials. Several finger skin features, such as valley depth and sweat ducts, can possibly be imaged by employing the necessary imaging topology. As such, two imaging approaches 1) using quasi-optical components and 2) using near-field probing were investigated. The numerical study is accomplished using a commercial Finite Element Method tool (ANSYS, HFSS) and several laboratory experiments are conducted to evaluate the imaging performance of the topologies. The study has shown that terahertz waves can provide high spatial resolution images of the skin undulations (valleys and ridges) and under certain conditions identify the sweat duct pattern. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2017
|
526 |
Low Frequency Electric Field ImagingJanuary 2017 (has links)
abstract: Electric field imaging allows for a low cost, compact, non-invasive, non-ionizing alternative to other methods of imaging. It has many promising industrial applications including security, safely imaging power lines at construction sites, finding sources of electromagnetic interference, geo-prospecting, and medical imaging. The work presented in this dissertation concerns low frequency electric field imaging: the physics, hardware, and various methods of achieving it.
Electric fields have historically been notoriously difficult to work with due to how intrinsically noisy the data is in electric field sensors. As a first contribution, an in-depth study demonstrates just how prevalent electric field noise is. In field tests, various cables were placed underneath power lines. Despite being shielded, the 60 Hz power line signal readily penetrated several types of cables.
The challenges of high noise levels were largely addressed by connecting the output of an electric field sensor to a lock-in amplifier. Using the more accurate means of collecting electric field data, D-dot sensors were arrayed in a compact grid to resolve electric field images as a second contribution. This imager has successfully captured electric field images of live concealed wires and electromagnetic interference.
An active method was developed as a third contribution. In this method, distortions created by objects when placed in a known electric field are read. This expands the domain of what can be imaged because the object does not need to be a time-varying electric field source. Images of dielectrics (e.g. bodies of water) and DC wires were captured using this new method.
The final contribution uses a collection of one-dimensional electric field images, i.e. projections, to reconstruct a two-dimensional image. This was achieved using algorithms based in computed tomography such as filtered backprojection. An algebraic approach was also used to enforce sparsity regularization with the L1 norm, further improving the quality of some images. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2017
|
527 |
Novel Multicarrier Memory Channel Architecture Using Microwave Interconnects: Alleviating the Memory WallJanuary 2018 (has links)
abstract: The increase in computing power has simultaneously increased the demand for input/output (I/O) bandwidth. Unfortunately, the speed of I/O and memory interconnects have not kept pace. Thus, processor-based systems are I/O and interconnect limited. The memory aggregated bandwidth is not scaling fast enough to keep up with increasing bandwidth demands. The term "memory wall" has been coined to describe this phenomenon.
A new memory bus concept that has the potential to push double data rate (DDR) memory speed to 30 Gbit/s is presented. We propose to map the conventional DDR bus to a microwave link using a multicarrier frequency division multiplexing scheme. The memory bus is formed using a microwave signal carried within a waveguide. We call this approach multicarrier memory channel architecture (MCMCA). In MCMCA, each memory signal is modulated onto an RF carrier using 64-QAM format or higher. The carriers are then routed using substrate integrated waveguide (SIW) interconnects. At the receiver, the memory signals are demodulated and then delivered to SDRAM devices. We pioneered the usage of SIW as memory channel interconnects and demonstrated that it alleviates the memory bandwidth bottleneck. We demonstrated SIW performance superiority over conventional transmission line in immunity to cross-talk and electromagnetic interference. We developed a methodology based on design of experiment (DOE) and response surface method techniques that optimizes the design of SIW interconnects and minimizes its performance fluctuations under material and manufacturing variations. Along with using SIW, we implemented a multicarrier architecture which enabled the aggregated DDR bandwidth to reach 30 Gbit/s. We developed an end-to-end system model in Simulink and demonstrated the MCMCA performance for ultra-high throughput memory channel.
Experimental characterization of the new channel shows that by using judicious frequency division multiplexing, as few as one SIW interconnect is sufficient to transmit the 64 DDR bits. Overall aggregated bus data rate achieves 240 GBytes/s data transfer with EVM not exceeding 2.26% and phase error of 1.07 degree or less. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2018
|
528 |
Fast boundary element formulations for electromagnetic modelling in biological tissues / Formulations rapides aux éléments de frontière pour la modélisation électromagnétique dans les tissus biologiquesOrtiz guzman, John Erick 24 November 2017 (has links)
Cette thèse présente plusieurs nouvelles techniques pour la convergence rapide des solutions aux éléments de frontière de problèmes électromagnétiques. Une attention spéciale a été dédiée aux formulations pertinentes pour les solutions aux problèmes électromagnétiques dans les tissus biologiques à haute et basse fréquence. Pour les basses fréquences, de nouveaux schémas pour préconditionner et accélérer le problème direct de l'électroencéphalographie sont présentés dans cette thèse. La stratégie de régularisation repose sur une nouvelle formule de Calderon, obtenue dans cette thèse, alors que l'accélération exploite le paradigme d'approximation adaptive croisée (ACA). En ce qui concerne le régime haute fréquence, en vue d'applications de dosimétrie, l'attention de ce travail a été concentrée sur l'étude de la régularisation de l'équation intégrale de Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) à l'aide de techniques hiérarchiques. Le travail comprend une analyse complète de l'équation pour des géométries simplement et non-simplement connectées. Cela a permis de concevoir une nouvelle stratégie de régularisation avec une base hiérarchique permettant d'obtenir une équation pour les milieux pénétrable stable pour un large spectre de fréquence. Un cadre de travail propédeutique de discrétisation et une bibliothèque de calcul pour des thèmes de recherches sur les techniques de Calderon en 2D sont proposés en dernière partie de cette thèse. Cela permettra d'étendre nos recherches à l'imagerie par tomographie. / This thesis presents several new techniques for rapidly converging boundary element solutions of electromagnetic problems. A special focus has been given to formulations that are relevant for electromagnetic solutions in biological tissues both at low and high frequencies. More specifically, as pertains the low-frequency regime, this thesis presents new schemes for preconditioning and accelerating the Forward Problem in Electroencephalography (EEG). The regularization strategy leveraged on a new Calderon formula, obtained in this thesis work, while the acceleration leveraged on an Adaptive-Cross-Approximation paradigm. As pertains the higher frequency regime, with electromagnetic dosimetry applications in mind, the attention of this work focused on the study and regularization of the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) integral equation via hierarchical techniques. In this effort, a complete analysis of the equation for both simply and non-simply connected geometries has been obtained. This allowed to design a new hierarchical basis regularization strategy to obtain an equation for penetrable media which is stable in a wide spectrum of frequencies. A final part of this thesis work presents a propaedeutic discretization framework and associated computational library for 2D Calderon research which will enable our future investigations in tomographic imaging.
|
529 |
Propellant Mass Scaling and Decoupling and Improved Plasma Coupling in a Pulsed Inductive ThrusterJanuary 2018 (has links)
abstract: Two methods of improving the life and efficiency of the Pulsed Inductive Thruster
(PIT) have been investigated. The first is a trade study of available switches to
determine the best device to implement in the PIT design. The second is the design
of a coil to improve coupling between the accelerator coil and the plasma. Experiments
were done with both permanent and electromagnets to investigate the feasibility of
implementing a modified Halbach array within the PIT to promote better plasma
coupling and decrease the unused space within the thruster. This array proved to
promote more complete coupling on the edges of the coil where it had been weak in
previous studies. Numerical analysis was done to predict the performance of a PIT
that utilized each suggested switch type. This model utilized the Alfven velocity to
determine the critical mass and energy of these theoretical thrusters. / Dissertation/Thesis / Masters Thesis Aerospace Engineering 2018
|
530 |
Asymptotic and Numerical Algorithms in Applied ElectromagnetismJanuary 2012 (has links)
abstract: Asymptotic and Numerical methods are popular in applied electromagnetism. In this work, the two methods are applied for collimated antennas and calibration targets, respectively. As an asymptotic method, the diffracted Gaussian beam approach (DGBA) is developed for design and simulation of collimated multi-reflector antenna systems, based upon Huygens principle and independent Gaussian beam expansion, referred to as the frames. To simulate a reflector antenna in hundreds to thousands of wavelength, it requires 1E7 - 1E9 independent Gaussian beams. To this end, high performance parallel computing is implemented, based on Message Passing Interface (MPI). The second part of the dissertation includes the plane wave scattering from a target consisting of doubly periodic array of sharp conducting circular cones by the magnetic field integral equation (MFIE) via Coiflet based Galerkin's procedure in conjunction with the Floquet theorem. Owing to the orthogonally, compact support, continuity and smoothness of the Coiflets, well-conditioned impedance matrices are obtained. Majority of the matrix entries are obtained in the spectral domain by one-point quadrature with high precision. For the oscillatory entries, spatial domain computation is applied, bypassing the slow convergence of the spectral summation of the non-damping propagating modes. The simulation results are compared with the solutions from an RWG-MLFMA based commercial software, FEKO, and excellent agreement is observed. / Dissertation/Thesis / Ph.D. Electrical Engineering 2012
|
Page generated in 0.0896 seconds