Spelling suggestions: "subject:"électromagnétisme numérique"" "subject:"electromagnétisme numérique""
1 |
Fast boundary element formulations for electromagnetic modelling in biological tissues / Formulations rapides aux éléments de frontière pour la modélisation électromagnétique dans les tissus biologiquesOrtiz guzman, John Erick 24 November 2017 (has links)
Cette thèse présente plusieurs nouvelles techniques pour la convergence rapide des solutions aux éléments de frontière de problèmes électromagnétiques. Une attention spéciale a été dédiée aux formulations pertinentes pour les solutions aux problèmes électromagnétiques dans les tissus biologiques à haute et basse fréquence. Pour les basses fréquences, de nouveaux schémas pour préconditionner et accélérer le problème direct de l'électroencéphalographie sont présentés dans cette thèse. La stratégie de régularisation repose sur une nouvelle formule de Calderon, obtenue dans cette thèse, alors que l'accélération exploite le paradigme d'approximation adaptive croisée (ACA). En ce qui concerne le régime haute fréquence, en vue d'applications de dosimétrie, l'attention de ce travail a été concentrée sur l'étude de la régularisation de l'équation intégrale de Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) à l'aide de techniques hiérarchiques. Le travail comprend une analyse complète de l'équation pour des géométries simplement et non-simplement connectées. Cela a permis de concevoir une nouvelle stratégie de régularisation avec une base hiérarchique permettant d'obtenir une équation pour les milieux pénétrable stable pour un large spectre de fréquence. Un cadre de travail propédeutique de discrétisation et une bibliothèque de calcul pour des thèmes de recherches sur les techniques de Calderon en 2D sont proposés en dernière partie de cette thèse. Cela permettra d'étendre nos recherches à l'imagerie par tomographie. / This thesis presents several new techniques for rapidly converging boundary element solutions of electromagnetic problems. A special focus has been given to formulations that are relevant for electromagnetic solutions in biological tissues both at low and high frequencies. More specifically, as pertains the low-frequency regime, this thesis presents new schemes for preconditioning and accelerating the Forward Problem in Electroencephalography (EEG). The regularization strategy leveraged on a new Calderon formula, obtained in this thesis work, while the acceleration leveraged on an Adaptive-Cross-Approximation paradigm. As pertains the higher frequency regime, with electromagnetic dosimetry applications in mind, the attention of this work focused on the study and regularization of the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) integral equation via hierarchical techniques. In this effort, a complete analysis of the equation for both simply and non-simply connected geometries has been obtained. This allowed to design a new hierarchical basis regularization strategy to obtain an equation for penetrable media which is stable in a wide spectrum of frequencies. A final part of this thesis work presents a propaedeutic discretization framework and associated computational library for 2D Calderon research which will enable our future investigations in tomographic imaging.
|
2 |
Contribution à la modélisation numérique en électromagnétisme statique stochastiqueGaignaire, Roman 11 March 2008 (has links) (PDF)
En électromagnétisme, dans la plupart des modèles numériques, déterministes, résolvant les équations de Maxwell, toutes les données d'entrée sont supposées parfaitement connues. Cependant la géométrie et les caractéristiques des matériaux peuvent présenter des incertitudes (vieillissement...). Nous cherchons alors à propager les incertitudes des données d'entrée vers les paramètres de sorties. Un modèle numérique probabiliste paraît alors plus adapté qu'un modèle numérique déterministe. Un certain nombre de méthodes ont été proposé en génie mécanique, très peu en électromagnétisme. La méthode de simulation de Monte Carlo est simple et robuste mais coûteuse en temps de calcul. On trouve aussi la méthode de perturbation où le champ inconnu est développé en série de Taylor autour de sa moyenne. Cette méthode permet de calculer la moyenne et la variance du champ de sortie assez simplement, mais pour les moments d'ordre supérieur, la généralisation semble complexe et coûteuse en temps de calcul. La méthode de développement en série de Neumann consiste à développer l'opérateur en série, mais la convergence semble lente. Il existe aussi des méthodes basées sur des développements des paramètres de sorties dans le chaos polynomial de Hermite. Ces méthodes sont basées sur une discrétisation de la dimension spatiale et de la dimension aléatoire. Ces méthodes peuvent être séparées en deux familles. La première, introduite par R.G. Ghanem, est dite intrusive car elle nécessite des modifications profondes du code éléments finis, elle est appelée Spectral Stochastic Finite Element Method (SSFEM) et elle peut être vue comme une généralisation de la méthode de Galerkin, la seconde est dite non intrusive car le code éléments finis n'est vu que comme une boite noire. Dans la thèse, nous présenterons la méthode de Monte Carlo, et nous étudierons la SSFEM et une classe particulière de méthode non intrusive : la méthode de projection sur le chaos polynomial de Hermite dans le cas de l'électrocinétique où les conductivités seront supposées être des variables aléatoires par morceaux. Dans ce cadre les conductivités peuvent être développées en polynômes de Hermite, nous étudierons l'effet de la troncature sur les résultats. Finalement, une méthode pour calculer des grandeurs globales, comme le courant sera présentée et utilisée pour l'étude d'un cas industriel : un manchon de câble électrique à haute tension. Mots-clés: électromagnétisme numérique, quantification des incertitudes, chaos polynomial, éléments finis stochastiques, méthode non intrusive de projection, calcul de grandeur globale.
|
Page generated in 0.0462 seconds