• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 723
  • 31
  • 18
  • 6
  • 4
  • 4
  • 1
  • 1
  • Tagged with
  • 1065
  • 516
  • 377
  • 368
  • 345
  • 100
  • 91
  • 91
  • 91
  • 81
  • 68
  • 66
  • 66
  • 65
  • 64
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
581

A New Class of Improved Bandwidth Planar Ultrawideband Modular Antenna (puma) Arrays Scalable to mm-Waves

Logan, John 01 January 2013 (has links) (PDF)
A new class of Planar Ultrawideband Modular Antenna (PUMA) arrays, termed PUMAv3, is introduced to offer improved performance and further meet demand needs for multifunctional systems. PUMAv3 extends the frequency scalability of PUMA arrays to mm-waves (approximately 50 GHz) and improves bandwidth by 50\% without the use of a matching network or external baluns. The major enabling technical innovation is the advent of a new common-mode mitigation mechanism that relies upon capacitively-loaded shorting vias to push broadside catastrophic resonances below the operating band without inhibiting low-end bandwidth performance. Ridged waveguide models are employed to explain the operational principles and accurately predict the location of the common-mode frequency within the new array topology. Additionally, the superstrate loading scheme is split into two exclusive layers to enhance broadside and wide angle impedance levels while maintaining the highest frequency at 97% of the grating lobe frequency and reducing the overall array profile by up to 30%. The PUMAv3 also retains the attractive practical advantages inherent to the PUMA array family: aperture modularity, direct 50-ohm feeding, and low-cost planar multilayer PCB fabrication. Infinite array full-wave simulations of a dual-polarized PUMAv3 satisfying manufacture guidelines suggest 10.6-47.6 GHz (4.5:1) operation with strong VSWR levels out to 45 degrees, high port isolation and low cross-polarization.
582

Design and Development of a Ka-band Interferometer for Cryospheric Applications

Vedantham, Harish K 01 January 2009 (has links) (PDF)
Topographic maps of the earth are essential to geographic and earth science studies. In particular, mapping and estimating physical parameters of the earth’s water and ice cover are critical to global climate studies. Among these, snow, ocean and fresh water topography, snow wetness and water equivalent are of immediate interest to the scientific community. Challenges in the instrument development and deployment posed by these required measurements are twofold. Firstly, these measurements are required to have global coverage, yet maintain stringent spatial resolution and accuracy margins. Secondly, snow topography measurement requires minimal electromagnetic wave penetration through snow, hence requiring the use of millimeter-wave frequency radars. While having the advantage of smaller and lighter structures, instruments at millimeter-wave frequencies are difficult to design, evaluate and deploy due to their mechanical and electric precision requirements. This thesis presents the design, development, detailed evaluation and first deployment of a Ka-band interferometer. An overview of the theory of interferometric mapping is presented including a discussion on instrument sensitivity and accuracy. Based in this theory, a geometric and hardware configuration for a rooftop deployment is arrived at. Detailed design and evaluation of the radar receiver is documented. Lastly first results from a rooftop and ground-based deployment are presented.
583

The Measurement of Internal Temperature Anomalies in the Body Using Microwave Radiometry and Anatomical Information: Inference Methods and Error Models

Sobers, Tamara V 01 January 2012 (has links) (PDF)
The ability to observe temperature variations inside the human body may help in detecting the presence of medical anomalies. Abnormal changes in physiological parameters (such as metabolic and blood perfusion rates) cause localized tissue temperature change. If the anatomical information of an observed tissue region is known, then a nominal temperature profile can be created using the nominal physiological parameters. Temperature-varying radiation emitted from the human body can be captured using microwave radiometry and compared to the expected radiation from nominal temperature profiles to detect anomalies. Microwave radiometry is a passive system with the ability to capture radiation from tissue up to several centimeters deep into the body. Our proposed method is to use microwave radiometry in conjunction with another imaging modality (such as ultrasound) that can provide the anatomical information needed to generate nominal profiles and improve detection of temperature anomalies. An inference framework is developed for using the nominal temperature profiles and radiometric weighting functions obtained from electromagnetic simulation software, to detect and estimate the location of temperature anomalies. The effects on inference performance of random and systematic deviations from nominal tissue parameter values in normal tissue are discussed and analyzed.
584

Finite Element Analysis of EMI in a Multi-Conductor Connector

Zafaruddin, Mohammed 23 May 2013 (has links)
No description available.
585

Wideband Low-Profile Antenna Arrays: Fundamental Limits and Practical Implementations

Doane, Jonathan P. 24 July 2013 (has links)
No description available.
586

A Uniform Geometrical Theory of Diffraction Model of Very-High-Frequency Omni-directional Range Systems for Improved Accuracy

Yellu, Augustine D. 26 September 2013 (has links)
No description available.
587

Studies of Land and Ocean Remote Sensing Using Spaceborne GNSS-R Systems

Al-Khaldi, Mohammad Mazen January 2020 (has links)
No description available.
588

Study on Additively Manufactured Antennas for Wearables and Bio-medical Applications

Lamsal, Sanjee 03 May 2023 (has links)
No description available.
589

From Invasive Neurosensing to Noninvasive Radiometric Core and Brain Monitoring

Tisdale, Katrina 27 September 2022 (has links)
No description available.
590

Novel Ultra-wideband Vivaldi Antenna and Mechanically Reconfigurable Antenna Arrays

Eichenberger, Jack Andrew 27 September 2022 (has links)
No description available.

Page generated in 0.0721 seconds