• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 763
  • 399
  • 110
  • 85
  • 58
  • 38
  • 22
  • 11
  • 8
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • Tagged with
  • 2194
  • 2194
  • 1010
  • 646
  • 397
  • 388
  • 364
  • 325
  • 322
  • 277
  • 258
  • 245
  • 227
  • 145
  • 145
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
851

Pathogenesis and clinical significance of AIDA-I-positive <i>E. coli</i> in diarrhea of pigs

Ravi, Madhu Babu 03 July 2006
<i>Escherichia coli </i> remains a significant cause of diarrhea worldwide and in recent years a relatively high number of E. coli carrying gene for AIDA-I (adhesin involved in diffuse adherence) has been isolated from cases of neonatal and post-weaning diarr<i>Escherichia coli</i> remains a significant cause of diarrhea worldwide and in recent years a relatively high number of <i>E. coli</i> carrying gene for AIDA-I (adhesin involved in diffuse adherence) has been isolated from cases of neonatal and post-weaning diarrhea in pigs. AIDA-I adhesin and its gene aidA were first identified and characterized in <i>E. coli</i> isolated from a human case of infantile diarrhea. Recent studies have demonstrated a significant degree of homology between the AIDA-I adhesin isolated from porcine neonatal diarrheagenic <i>E. coli</i> isolates and that from a human <i>E. coli</i> isolate; however, the role of AIDA-I adhesin in the pathogenesis of diarrhea and the clinical significance of the AIDA-I <i>E. coli</i> virotype are unknown in humans or in animals. <p>First, in order to evaluate the role of AIDA-I adhesin, colostrum deprived newborn pigs were infected with: i) a wild strain PD20 (AIDA-I+/STb+) <i>E. coli</i>; ii) a mutant strain PD20M (AIDA-I-/STb+), generated by partial deletion of the aidA gene from the wild strain, iii) a complemented strain PD20C (AIDA-I+/STb+), generated by reintroducing the full length aidA gene into PD20M strain, and iv) a nonpathogenic <i>E. coli</i> strain PD71 used as negative control. Pigs infected with wild type (PD20) and complemented (PD20C) strains developed diarrhea between 15-19 h and 27-31 h after oral inoculation, respectively, in contrast to pigs infected with strains PD20M or PD71 that did not developed diarrhea. Intestinal colonization was evaluated by histology, imunohistochemistry (IHC), transmission electron microscopy (TEM), including immunogold electron microscopy (IGEM), and showed heavy bacterial colonization with biofilm formation in the large intestine with AIDA-I+ strains (PD20 and PD20C), but not in pigs infected with AIDA-I- strains (PD20M and PD71). In vitro assays showed marked diffuse adherence to HeLa cells, enhanced bacterial autoaggregation and significant biofilm formation by AIDA-I+ strains, when compared to AIDA-I- strains.<p>Second, 110 F4 negative <i>E. coli</i> isolates from problematic cases of diarrhea in pigs were subjected to multiplex polymerase chain reaction (M-PCR) for detection of the genes encoding the virulence factors F4, F5, F6, F18, F41, AIDA-I, EAE, STa, STb, LT, EAST1 and Stx2e. In this study, the prevalence of aidA gene among the 110 isolates was 8.2%, and the aidA gene was shown to be associated most commonly with EAST1 and STb genes. The genes for the F4, F5, F6 and F41 fimbriae were absent in all the AIDA-I+ <i>E. coli</i> isolates. <p>The clinical significance of the AIDA-I+ <i>E. coli</i> was studied using clinical data available for 35 of the 110 <i>E. coli</i> isolates, originating from 18 cases of diarrhea. Among these 18 diarrhea cases, 3 cases (5 isolates) were found to have AIDA-I+ <i>E. coli</i> and these were significantly associated with diarrhea cases of post-weaning age group. Enterotoxigenic <i>E. coli</i> strains were isolated from the majority (72.5%) of 18 diarrhea cases and a high proportion (23.1%) of these ETEC cases carried AIDA-I+ <i>E. coli</i>. <p>In conclusion, AIDA-I adhesin appears to be a significant virulence factor for intestinal colonization and induction of biofilm formation. Further, experimental studies and clinical data suggest that the AIDA-I/STb virotype may be important in the pathogenesis of pre-weaning and post-weaning diarrhea in pigs. Our results suggest that AIDA-I may play a significant role in the development of diarrhea in pigs. .hea in pigs. AIDA-I adhesin and its gene aidA were first identified and characterized in E. coli isolated from a human case of infantile diarrhea. Recent studies have demonstrated a significant degree of homology between the AIDA-I adhesin isolated from porcine neonatal diarrheagenic E. coli isolates and that from a human E. coli isolate; however, the role of AIDA-I adhesin in the pathogenesis of diarrhea and the clinical significance of the AIDA-I E. coli virotype are unknown in humans or in animals. First, in order to evaluate the role of AIDA-I adhesin, colostrum deprived newborn pigs were infected with: i) a wild strain PD20 (AIDA-I+/STb+) E. coli; ii) a mutant strain PD20M (AIDA-I-/STb+), generated by partial deletion of the aidA gene from the wild strain, iii) a complemented strain PD20C (AIDA-I+/STb+), generated by reintroducing the full length aidA gene into PD20M strain, and iv) a nonpathogenic E. coli strain PD71 used as negative control. Pigs infected with wild type (PD20) and complemented (PD20C) strains developed diarrhea between 15-19 h and 27-31 h after oral inoculation, respectively, in contrast to pigs infected with strains PD20M or PD71 that did not developed diarrhea. Intestinal colonization was evaluated by histology, imunohistochemistry (IHC), transmission electron microscopy (TEM), including immunogold electron microscopy (IGEM), and showed heavy bacterial colonization with biofilm formation in the large intestine with AIDA-I+ strains (PD20 and PD20C), but not in pigs infected with AIDA-I- strains (PD20M and PD71). In vitro assays showed marked diffuse adherence to HeLa cells, enhanced bacterial autoaggregation and significant biofilm formation by AIDA-I+ strains, when compared to AIDA-I- strains. Second, 110 F4 negative E. coli isolates from problematic cases of diarrhea in pigs were subjected to multiplex polymerase chain reaction (M-PCR) for detection of the genes encoding the virulence factors F4, F5, F6, F18, F41, AIDA-I, EAE, STa, STb, LT, EAST1 and Stx2e. In this study, the prevalence of aidA gene among the 110 isolates was 8.2%, and the aidA gene was shown to be associated most commonly with EAST1 and STb genes. The genes for the F4, F5, F6 and F41 fimbriae were absent in all the AIDA-I+ E. coli isolates. The clinical significance of the AIDA-I+ E. coli was studied using clinical data available for 35 of the 110 E. coli isolates, originating from 18 cases of diarrhea. Among these 18 diarrhea cases, 3 cases (5 isolates) were found to have AIDA-I+ E. coli and these were significantly associated with diarrhea cases of post-weaning age group. Enterotoxigenic E. coli strains were isolated from the majority (72.5%) of 18 diarrhea cases and a high proportion (23.1%) of these ETEC cases carried AIDA-I+ E. coli. In conclusion, AIDA-I adhesin appears to be a significant virulence factor for intestinal colonization and induction of biofilm formation. Further, experimental studies and clinical data suggest that the AIDA-I/STb virotype may be important in the pathogenesis of pre-weaning and post-weaning diarrhea in pigs. Our results suggest that AIDA-I may play a significant role in the development of diarrhea in pigs.
852

Reproductive biology and nectary structure of <i>Lythrum</i> in central Saskatchewan

Caswell, Wade Devin 26 August 2008
This project examined multiple aspects of the reproductive biology of the wetland invasive species, purple loosestrife (<i>Lythrum salicaria</i> L.), in central Saskatchewan. An examination of insect taxa visiting the three floral morphs of <i>Tristylous</i> L. <i>salicaria</i>, as well as a ranking of the pollination efficiency of individual insect species, an apparent first for L salicaria, was undertaken. Surface features of the floral nectary of L. <i>salicaria</i>, as well as floral nectar secretion dynamics, were also investigated. This project also re-visited some of the previous work done on this invasive species, including various floral organ morphometrics in relation to heterostyly, and aspects of the tristylous breeding system including self-fertilization, and fertilization potential of both illegitimate pollination and legitimate pollination.<p>The trimorphic nature of the sexual floral organs of L. <i>salicaria</i> were well defined in Saskatchewan. Significant differences in length (long-, intermediate- and short-style lengths) exist between all three floral morphs. Lengths of the staminal filaments (long, intermediate, and short) were also significantly different. Also the floral nectary in L. <i>salicaria</i> is located in a depression formed at the interface of the hypanthium and the gynoecium. Several stomata are located at regular intervals along the nectary surface, and may constitute the escape route for floral nectar. No morphological differences in nectary structure were apparent among the three floral morphs.<p>Nectar secretion dynamics of L. <i>salicaria</i> were examined between the three floral morphs throughout two summer days in 2006. Peak average nectar volumes and nectar sugar quantities were detected at 3:00 pm, and, interestingly, no significant differences were detected between floral morphs, in accordance with nectary morphology. The estimated secretion rates for L. <i>salicaria</i> ranged from 61 83 µg of nectar sugar per flower per hour.<p>Hand-pollination experiments carried out over the summers of 2006 and 2007 at three field sites in and around Saskatoon have verified the strong self-incompatibility in the breeding system of this tristylous species. Intramorph pollination, using illegitimate pollen, did not result in fertilisation, whereas legitimate hand-pollination experiments yielded multiple pollen tubes at the style base, without exception.<p><i>Lythrum salicaria</i> in central Saskatchewan was visited by several bee taxa including honeybees (<i>Apis mellifera</i> L.), bumblebees (Bombus spp.), leafcutter bees (Megachile spp.), and sweat bees (Lasioglossum spp.). A single visit by <i>Anthophora furcata</i> (Panzer) was also recorded in 2007. Generally, bee visits led to high levels of pollination success as determined by fluorescence microscopy of pollen tubes following single insect visits to previously-unvisited flowers. However, most visits by hoverflies (Syrphidae) were non-pollinating. Visits by Pieris rapae (L.), yellowjacket wasps (Vespidae) and some non-syrphid flies (Diptera) also yielded no pollen tubes at the style base.<p>A study of the ultrastructure and development of the floral nectary of the purple loosestrife cultivar Morden Gleam (<i>Lythrum virgatum</i> L. x L. alatum Pursh.) showed that starch build up in pre-secretory nectary tissues declined throughout secretion, and is virtually absent in post-secretory nectary tissues. The lack of a direct vascular supply to the floral nectary suggests that the starch breakdown products likely make up most of the floral nectar carbohydrates. Surface features of the floral nectary in Morden Gleam closely resembled those of L. salicaria, located in the valley formed between the hypanthium and gynoecium. Nectary stomata, occasionally in pairs, likely serve as outlets for nectar in this cultivar.
853

In-Situ Ethylene Polymerization with Organoclay-Supported Metallocenes for the Preparation of Polyethylene-Clay Nanocomposites

Maneshi, Abolfazl January 2010 (has links)
In-situ polymerization is one of the most efficient methods for production of polymer clay nanocomposites. In-situ polymerization of olefins using coordination catalysts is a type of heterogeneous polymerization. In order to achieve acceptable clay nanolayer dispersion in the polyolefin matrix, the clay layer exfoliation and particle break up during the polymerization are essential requirements. A literature review on polyolefin/clay nanocomposite is given in Chapter 2. In Chapter 3, we present a new mathematical model, which is as an extension of the multigrain model (MGM), to describe the intercalative polymerization and expansion of clay interlayer spaces during polymerization using clay-supported metallocenes. The results from the model show that, under the studied conditions, mass transfer is not a strong factor controlling clay exfoliation and particle break up. If the polymerization active sites are supported uniformly on all clay surfaces, effective exfoliation will be achieved after a relative short polymerization time. In practice, obtaining good dispersion of clay nanolayers with uniform properties requires that the active sites be exclusively located on the clay nanolayer surfaces, and not extracted by the solvent to form a homogeneous solution. Factors favouring active site extraction would result in nanocomposites with poor properties. In addition, high polymerization activities, stable polymerization runs, and ease of supporting are other criteria for a successful in-situ polymerization. For this purpose we established a catalyst supporting method by which most of these requirements were met. In this method, the water content on the clay surface, which is considered as poison for the metallocene catalyst, was used to produce MAO upon reaction with trimethylaluminum (TMA). Using this method, polymerization was highly active in absence of MAO cocatalyst, knowing that MAO cocatalyst promotes active site extraction from the clay surface and results in poor powder morphology. Chapter 4 describes the development of this supporting methodology. Chapter 4 also investigates the effect of the organic modification type existing on the clay surface on the success of catalyst supporting and in-situ polymerization. We found that using the proposed supporting procedure, only tertiary ammonium type modification enhanced the in-situ polymerization, whereas the quaternary ammonium worsened the catalyst supporting efficiency and led to catalyst with poor or no polymerization activity. It is suggested that, in addition to enhancing clay surface-organic solvent compatibility (which facilitates catalyst supporting), the tertiary ammonium cation reacts with the in-situ produced MAO and increases the stability of the cocatalyst bonded to the clay surface. The effect of different polymerization conditions on the polymerization behavior and nanocomposite structural properties, such as catalyst loading during supporting, polymerization temperature and triisobutylaluminum (TIBA) concentration, were studied in Chapter 5. It was found that TIBA acts merely as scavenger. High polymerization activities were obtained with low Al/Zr ratios (Al from TIBA) and increased Al concentration decreased the polymerization activity and also the quality of powder morphology. Catalyst loading in the supporting step showed to have an important role in determining the final properties. The clay particles with higher catalyst loading resulted in better exfoliation and powder morphologies The effect of solvent type during catalyst supporting and polymerization was studied in Chapter 6. It was shown that catalyst supporting in n-hexane resulted in polymerizations with higher activities and polymers with higher molecular weight were produced. Polymerization with catalyst supported in hexane showed different ethylene uptake profiles, suggesting different mechanism of exfoliation. It is suggested that using this catalyst, the clay is mostly exfoliated before polymerization started. Similar to the original clay, the catalyst supporting efficiency on the organically modified clay was close to 100 percent. However, comparing the polymerization activities of these catalysts to those that were supported directly in the reactor just before the polymerization (in-reactor, or in-situ, supported catalysts) shows that a considerable fraction of the active sites are deactivated during the prolonged contact between catalyst and clay support surface. In Chapter 5, it was shown that the in-reactor supported catalyst had considerably higher polymerization activities, up to 40 percent of that of the homogeneous catalyst. Nanocomposites made with in-reactor supported catalysts had powder morphology and nanaolayer dispersion comparable to those made with clay-supported catalysts.
854

Pathogenesis and clinical significance of AIDA-I-positive <i>E. coli</i> in diarrhea of pigs

Ravi, Madhu Babu 03 July 2006 (has links)
<i>Escherichia coli </i> remains a significant cause of diarrhea worldwide and in recent years a relatively high number of E. coli carrying gene for AIDA-I (adhesin involved in diffuse adherence) has been isolated from cases of neonatal and post-weaning diarr<i>Escherichia coli</i> remains a significant cause of diarrhea worldwide and in recent years a relatively high number of <i>E. coli</i> carrying gene for AIDA-I (adhesin involved in diffuse adherence) has been isolated from cases of neonatal and post-weaning diarrhea in pigs. AIDA-I adhesin and its gene aidA were first identified and characterized in <i>E. coli</i> isolated from a human case of infantile diarrhea. Recent studies have demonstrated a significant degree of homology between the AIDA-I adhesin isolated from porcine neonatal diarrheagenic <i>E. coli</i> isolates and that from a human <i>E. coli</i> isolate; however, the role of AIDA-I adhesin in the pathogenesis of diarrhea and the clinical significance of the AIDA-I <i>E. coli</i> virotype are unknown in humans or in animals. <p>First, in order to evaluate the role of AIDA-I adhesin, colostrum deprived newborn pigs were infected with: i) a wild strain PD20 (AIDA-I+/STb+) <i>E. coli</i>; ii) a mutant strain PD20M (AIDA-I-/STb+), generated by partial deletion of the aidA gene from the wild strain, iii) a complemented strain PD20C (AIDA-I+/STb+), generated by reintroducing the full length aidA gene into PD20M strain, and iv) a nonpathogenic <i>E. coli</i> strain PD71 used as negative control. Pigs infected with wild type (PD20) and complemented (PD20C) strains developed diarrhea between 15-19 h and 27-31 h after oral inoculation, respectively, in contrast to pigs infected with strains PD20M or PD71 that did not developed diarrhea. Intestinal colonization was evaluated by histology, imunohistochemistry (IHC), transmission electron microscopy (TEM), including immunogold electron microscopy (IGEM), and showed heavy bacterial colonization with biofilm formation in the large intestine with AIDA-I+ strains (PD20 and PD20C), but not in pigs infected with AIDA-I- strains (PD20M and PD71). In vitro assays showed marked diffuse adherence to HeLa cells, enhanced bacterial autoaggregation and significant biofilm formation by AIDA-I+ strains, when compared to AIDA-I- strains.<p>Second, 110 F4 negative <i>E. coli</i> isolates from problematic cases of diarrhea in pigs were subjected to multiplex polymerase chain reaction (M-PCR) for detection of the genes encoding the virulence factors F4, F5, F6, F18, F41, AIDA-I, EAE, STa, STb, LT, EAST1 and Stx2e. In this study, the prevalence of aidA gene among the 110 isolates was 8.2%, and the aidA gene was shown to be associated most commonly with EAST1 and STb genes. The genes for the F4, F5, F6 and F41 fimbriae were absent in all the AIDA-I+ <i>E. coli</i> isolates. <p>The clinical significance of the AIDA-I+ <i>E. coli</i> was studied using clinical data available for 35 of the 110 <i>E. coli</i> isolates, originating from 18 cases of diarrhea. Among these 18 diarrhea cases, 3 cases (5 isolates) were found to have AIDA-I+ <i>E. coli</i> and these were significantly associated with diarrhea cases of post-weaning age group. Enterotoxigenic <i>E. coli</i> strains were isolated from the majority (72.5%) of 18 diarrhea cases and a high proportion (23.1%) of these ETEC cases carried AIDA-I+ <i>E. coli</i>. <p>In conclusion, AIDA-I adhesin appears to be a significant virulence factor for intestinal colonization and induction of biofilm formation. Further, experimental studies and clinical data suggest that the AIDA-I/STb virotype may be important in the pathogenesis of pre-weaning and post-weaning diarrhea in pigs. Our results suggest that AIDA-I may play a significant role in the development of diarrhea in pigs. .hea in pigs. AIDA-I adhesin and its gene aidA were first identified and characterized in E. coli isolated from a human case of infantile diarrhea. Recent studies have demonstrated a significant degree of homology between the AIDA-I adhesin isolated from porcine neonatal diarrheagenic E. coli isolates and that from a human E. coli isolate; however, the role of AIDA-I adhesin in the pathogenesis of diarrhea and the clinical significance of the AIDA-I E. coli virotype are unknown in humans or in animals. First, in order to evaluate the role of AIDA-I adhesin, colostrum deprived newborn pigs were infected with: i) a wild strain PD20 (AIDA-I+/STb+) E. coli; ii) a mutant strain PD20M (AIDA-I-/STb+), generated by partial deletion of the aidA gene from the wild strain, iii) a complemented strain PD20C (AIDA-I+/STb+), generated by reintroducing the full length aidA gene into PD20M strain, and iv) a nonpathogenic E. coli strain PD71 used as negative control. Pigs infected with wild type (PD20) and complemented (PD20C) strains developed diarrhea between 15-19 h and 27-31 h after oral inoculation, respectively, in contrast to pigs infected with strains PD20M or PD71 that did not developed diarrhea. Intestinal colonization was evaluated by histology, imunohistochemistry (IHC), transmission electron microscopy (TEM), including immunogold electron microscopy (IGEM), and showed heavy bacterial colonization with biofilm formation in the large intestine with AIDA-I+ strains (PD20 and PD20C), but not in pigs infected with AIDA-I- strains (PD20M and PD71). In vitro assays showed marked diffuse adherence to HeLa cells, enhanced bacterial autoaggregation and significant biofilm formation by AIDA-I+ strains, when compared to AIDA-I- strains. Second, 110 F4 negative E. coli isolates from problematic cases of diarrhea in pigs were subjected to multiplex polymerase chain reaction (M-PCR) for detection of the genes encoding the virulence factors F4, F5, F6, F18, F41, AIDA-I, EAE, STa, STb, LT, EAST1 and Stx2e. In this study, the prevalence of aidA gene among the 110 isolates was 8.2%, and the aidA gene was shown to be associated most commonly with EAST1 and STb genes. The genes for the F4, F5, F6 and F41 fimbriae were absent in all the AIDA-I+ E. coli isolates. The clinical significance of the AIDA-I+ E. coli was studied using clinical data available for 35 of the 110 E. coli isolates, originating from 18 cases of diarrhea. Among these 18 diarrhea cases, 3 cases (5 isolates) were found to have AIDA-I+ E. coli and these were significantly associated with diarrhea cases of post-weaning age group. Enterotoxigenic E. coli strains were isolated from the majority (72.5%) of 18 diarrhea cases and a high proportion (23.1%) of these ETEC cases carried AIDA-I+ E. coli. In conclusion, AIDA-I adhesin appears to be a significant virulence factor for intestinal colonization and induction of biofilm formation. Further, experimental studies and clinical data suggest that the AIDA-I/STb virotype may be important in the pathogenesis of pre-weaning and post-weaning diarrhea in pigs. Our results suggest that AIDA-I may play a significant role in the development of diarrhea in pigs.
855

Reproductive biology and nectary structure of <i>Lythrum</i> in central Saskatchewan

Caswell, Wade Devin 26 August 2008 (has links)
This project examined multiple aspects of the reproductive biology of the wetland invasive species, purple loosestrife (<i>Lythrum salicaria</i> L.), in central Saskatchewan. An examination of insect taxa visiting the three floral morphs of <i>Tristylous</i> L. <i>salicaria</i>, as well as a ranking of the pollination efficiency of individual insect species, an apparent first for L salicaria, was undertaken. Surface features of the floral nectary of L. <i>salicaria</i>, as well as floral nectar secretion dynamics, were also investigated. This project also re-visited some of the previous work done on this invasive species, including various floral organ morphometrics in relation to heterostyly, and aspects of the tristylous breeding system including self-fertilization, and fertilization potential of both illegitimate pollination and legitimate pollination.<p>The trimorphic nature of the sexual floral organs of L. <i>salicaria</i> were well defined in Saskatchewan. Significant differences in length (long-, intermediate- and short-style lengths) exist between all three floral morphs. Lengths of the staminal filaments (long, intermediate, and short) were also significantly different. Also the floral nectary in L. <i>salicaria</i> is located in a depression formed at the interface of the hypanthium and the gynoecium. Several stomata are located at regular intervals along the nectary surface, and may constitute the escape route for floral nectar. No morphological differences in nectary structure were apparent among the three floral morphs.<p>Nectar secretion dynamics of L. <i>salicaria</i> were examined between the three floral morphs throughout two summer days in 2006. Peak average nectar volumes and nectar sugar quantities were detected at 3:00 pm, and, interestingly, no significant differences were detected between floral morphs, in accordance with nectary morphology. The estimated secretion rates for L. <i>salicaria</i> ranged from 61 83 µg of nectar sugar per flower per hour.<p>Hand-pollination experiments carried out over the summers of 2006 and 2007 at three field sites in and around Saskatoon have verified the strong self-incompatibility in the breeding system of this tristylous species. Intramorph pollination, using illegitimate pollen, did not result in fertilisation, whereas legitimate hand-pollination experiments yielded multiple pollen tubes at the style base, without exception.<p><i>Lythrum salicaria</i> in central Saskatchewan was visited by several bee taxa including honeybees (<i>Apis mellifera</i> L.), bumblebees (Bombus spp.), leafcutter bees (Megachile spp.), and sweat bees (Lasioglossum spp.). A single visit by <i>Anthophora furcata</i> (Panzer) was also recorded in 2007. Generally, bee visits led to high levels of pollination success as determined by fluorescence microscopy of pollen tubes following single insect visits to previously-unvisited flowers. However, most visits by hoverflies (Syrphidae) were non-pollinating. Visits by Pieris rapae (L.), yellowjacket wasps (Vespidae) and some non-syrphid flies (Diptera) also yielded no pollen tubes at the style base.<p>A study of the ultrastructure and development of the floral nectary of the purple loosestrife cultivar Morden Gleam (<i>Lythrum virgatum</i> L. x L. alatum Pursh.) showed that starch build up in pre-secretory nectary tissues declined throughout secretion, and is virtually absent in post-secretory nectary tissues. The lack of a direct vascular supply to the floral nectary suggests that the starch breakdown products likely make up most of the floral nectar carbohydrates. Surface features of the floral nectary in Morden Gleam closely resembled those of L. salicaria, located in the valley formed between the hypanthium and gynoecium. Nectary stomata, occasionally in pairs, likely serve as outlets for nectar in this cultivar.
856

In-Situ Ethylene Polymerization with Organoclay-Supported Metallocenes for the Preparation of Polyethylene-Clay Nanocomposites

Maneshi, Abolfazl January 2010 (has links)
In-situ polymerization is one of the most efficient methods for production of polymer clay nanocomposites. In-situ polymerization of olefins using coordination catalysts is a type of heterogeneous polymerization. In order to achieve acceptable clay nanolayer dispersion in the polyolefin matrix, the clay layer exfoliation and particle break up during the polymerization are essential requirements. A literature review on polyolefin/clay nanocomposite is given in Chapter 2. In Chapter 3, we present a new mathematical model, which is as an extension of the multigrain model (MGM), to describe the intercalative polymerization and expansion of clay interlayer spaces during polymerization using clay-supported metallocenes. The results from the model show that, under the studied conditions, mass transfer is not a strong factor controlling clay exfoliation and particle break up. If the polymerization active sites are supported uniformly on all clay surfaces, effective exfoliation will be achieved after a relative short polymerization time. In practice, obtaining good dispersion of clay nanolayers with uniform properties requires that the active sites be exclusively located on the clay nanolayer surfaces, and not extracted by the solvent to form a homogeneous solution. Factors favouring active site extraction would result in nanocomposites with poor properties. In addition, high polymerization activities, stable polymerization runs, and ease of supporting are other criteria for a successful in-situ polymerization. For this purpose we established a catalyst supporting method by which most of these requirements were met. In this method, the water content on the clay surface, which is considered as poison for the metallocene catalyst, was used to produce MAO upon reaction with trimethylaluminum (TMA). Using this method, polymerization was highly active in absence of MAO cocatalyst, knowing that MAO cocatalyst promotes active site extraction from the clay surface and results in poor powder morphology. Chapter 4 describes the development of this supporting methodology. Chapter 4 also investigates the effect of the organic modification type existing on the clay surface on the success of catalyst supporting and in-situ polymerization. We found that using the proposed supporting procedure, only tertiary ammonium type modification enhanced the in-situ polymerization, whereas the quaternary ammonium worsened the catalyst supporting efficiency and led to catalyst with poor or no polymerization activity. It is suggested that, in addition to enhancing clay surface-organic solvent compatibility (which facilitates catalyst supporting), the tertiary ammonium cation reacts with the in-situ produced MAO and increases the stability of the cocatalyst bonded to the clay surface. The effect of different polymerization conditions on the polymerization behavior and nanocomposite structural properties, such as catalyst loading during supporting, polymerization temperature and triisobutylaluminum (TIBA) concentration, were studied in Chapter 5. It was found that TIBA acts merely as scavenger. High polymerization activities were obtained with low Al/Zr ratios (Al from TIBA) and increased Al concentration decreased the polymerization activity and also the quality of powder morphology. Catalyst loading in the supporting step showed to have an important role in determining the final properties. The clay particles with higher catalyst loading resulted in better exfoliation and powder morphologies The effect of solvent type during catalyst supporting and polymerization was studied in Chapter 6. It was shown that catalyst supporting in n-hexane resulted in polymerizations with higher activities and polymers with higher molecular weight were produced. Polymerization with catalyst supported in hexane showed different ethylene uptake profiles, suggesting different mechanism of exfoliation. It is suggested that using this catalyst, the clay is mostly exfoliated before polymerization started. Similar to the original clay, the catalyst supporting efficiency on the organically modified clay was close to 100 percent. However, comparing the polymerization activities of these catalysts to those that were supported directly in the reactor just before the polymerization (in-reactor, or in-situ, supported catalysts) shows that a considerable fraction of the active sites are deactivated during the prolonged contact between catalyst and clay support surface. In Chapter 5, it was shown that the in-reactor supported catalyst had considerably higher polymerization activities, up to 40 percent of that of the homogeneous catalyst. Nanocomposites made with in-reactor supported catalysts had powder morphology and nanaolayer dispersion comparable to those made with clay-supported catalysts.
857

Preparation, characterization and performance evaluation of Nanocomposite SoyProtein/Carbon Nanotubes (Soy/CNTs) from Soy Protein Isolate

Sadare, Olawumi Oluwafolakemi 04 1900 (has links)
Formaldehyde-based adhesives have been reported to be detrimental to health. Petrochemical-based adhesives are non-renewable, limited and costly. Therefore, the improvement of environmental-friendly adhesive from natural agricultural products has awakened noteworthy attention. A novel adhesive for wood application was successfully prepared with enhanced shear strength and water resistance. The Fourier transmform infrared spectra showed the surface functionalities of the functionalized carbon nanotubes (FCNTs) and soy protein isolate nanocomposite adhesive. The attachment of carboxylic functional group on the surface of the carbon nanotubes (CNTs) after purification contributed to the effective dispersion of the CNTs in the nanocomposite adhesive. Hence, enhanced properties of FCNTs were successfully transferred into the SPI/CNTs nanocomposite adhesive. These unique functionalities on FCNTs however, improved the mechanical properties of the adhesive. The shear strength and water resistance of SPI/FCNTs was higher than that of the SPI/CNTs. SEM images showed the homogenous dispersion of CNTs in the SPI/CNTs nanocomposite adhesive. The carbon nanotubes were distributed uniformly in the soy protein adhesive with no noticeable clusters at relatively reduced fractions of CNTs as shown in the SEM images, which resulted into better adhesion on wood surface. Mechanical (shear) mixing and ultrasonication with 30 minutes of shear mixing both showed an improved dispersion of CNTs in the soy protein matrix. However, ultrasonication method of dispersion showed higher tensile shear strength and water resistance than in mechanical (shear) mixing method. Thermogravimetric analysis of the samples also showed that the CNTs incorporated increases the thermal stability of the nanocomposite adhesive at higher loading fraction. Incorporation of CNTs into soy protein isolate adhesive improved both the shear strength and water resistance of the adhesive prepared at a relatively reduced concentration of 0.3%.The result showed that tensile shear strength of SPI/FCNTs adhesive was 0.8 MPa and 7.25MPa at dry and wet state respectively, while SPI/CNTs adhesive had 6.91 MPa and 5.48MPa at dry and wet state respectively. There was over 100% increase in shear strength both at dry and wet state compared to the pure SPI adhesive. The 19% decrease in value of the new adhesive developed compared to the minimum value of ≥10MPa of European standard for interior wood application may be attributed to the presence of metallic particles remaining after purification of CNTs. The presence of metallic particles will prevent the proper penetration of the adhesive into the wood substrate. The type of wood used in this study as well as the processing parameters could also result into lower value compared to the value of European standard. Therefore, optimization of the processing parameter as well as the conversion of carboxylic acid group on the surface of the CNTs into acyl chloride group may be employed in future investigation. However, the preparation of new nanocomposite adhesive from soy protein isolate will replace the formaldehyde and petrochemical adhesive in the market and be of useful application in the wood industry. / Civil and Chemical Engineering / M. Tech. (Chemical Engineering)
858

Estudo do compósito 3Y-TZP/Sisub(2)Nsub(2)O obtido por sinterização sem pressão

SANTOS, CARLOS A.X. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:51:50Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:08:58Z (GMT). No. of bitstreams: 0 / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
859

Análise morfológica e da resistência de união da superfície dentinária irradiada com os lasers de Er:YAG e Er,Cr:YSGG / Morphological analysis and micro-tensile bond strength of dentin surface irradiated with Er:YAG and Er,Cr:YSGG lasers

Simone Gonçalves Moretto 03 March 2009 (has links)
Avanços na tecnologia introduziram o laser como um grande aliado na remoção seletiva do tecido cariado. Entretanto, o efeito dos lasers e seus diferentes parâmetros nos tecidos duros dentais e fibrilas colágenas não foi completamente estudado. O objetivo deste estudo foi avaliar os efeitos da irradiação com os lasers de Er:YAG e Er,Cr:YSGG na morfologia e na resistência de união da dentina irradiada à resina composta. Sessenta e quatro hemi-discos de dentina obtidos de terceiros molares humanos foram aleatoriamente divididos em 9 grupos (n=7): G1 Controle (não irradiado); G2 Laser de Er:YAG 250 mJ, 4 Hz; G3 Laser de Er:YAG 200 mJ, 4 Hz; G4 Laser de Er:YAG 180 mJ, 10 Hz; G5 Laser de Er:YAG 160 mJ, 10 Hz; G6 - Laser de Er,Cr:YSGG 2W, 20 Hz; G7 - Laser de Er,Cr:YSGG 2,5W, 20 Hz; G8 - Laser de Er,Cr:YSGG 3W, 20 Hz; G9 - Laser de Er,Cr:YSGG 4W, 20 Hz. Destes, vinte e sete amostras (n=3) foram processadas e destinadas à avaliação em Microscopia Eletrônica de Varredura (MEV) para análise morfológica de superfície e em corte transversal da dentina irradiada. Nove fragmentos (n=1) foram submetidos à Microscopia Eletrônica de Transmissão (MET) e vinte e sete (n=3) foram restaurados para análise da interface adesiva. Para o teste de resistência de união, 45 superfícies dentinárias planificadas foram restauradas e, após 24 horas de armazenamento em água, foram submetidas ao teste de microtração. O teste de ANOVA (=5%) foi realizado e verificou-se que o G1 apresentou os maiores valores de resistência de união quando comparado aos demais grupos experimentais. Não houve diferença estatisticamente significativa entre os grupos irradiados, e a análise morfológica revelou para estes grupos uma superfície irregular, com aparência escamosa, sem smear layer e com os túbulos dentinários abertos. Nos cortes transversais foi possível observar que esses efeitos se estendem à subsuperfície dentinária e resultam na formação de um padrão modificado dos tags durante o processo de hibridização. Os resultados deste estudo in vitro sugerem que a irradiação com os lasers de Er:YAG e Er,Cr:YSGG promovem um padrão morfológico específico da superfície dentinária, os quais podem interferir negativamente nos valores de resistência de união à resina composta. / Improvements on technology have introduced the laser as a great ally in the selected removal of dental caries. However, the different laser parameters and their effects on dental hard tissues and collagen fibrils have not yet been completely studied. The aim of the present study was to evaluate the effect of Er:YAG and Er,Cr:YSGG laser irradiation on dentin morphology and on microtensile bond strength of resin composite to the irradiated dentin. Sixty-four dentin hemi-disks obtained from sound human third molars were randomly divided into 9 groups (n=7): G1 Control, G2 Er:YAG Laser 250 mJ, 4 Hz; G3 Er:YAG Laser 200 mJ, 4 Hz; G4 Er:YAG Laser 180 mJ, 10 Hz; G5 Er:YAG Laser 160 mJ, 10 Hz; G6 - Er,Cr:YSGG Laser 2W, 20 Hz; G7 - Er,Cr:YSGG Laser 2,5W, 20 Hz; G8 - Er,Cr:YSGG Laser 3W, 20 Hz; G9 - Er,Cr:YSGG Laser 4W, 20 Hz. Twenty seven specimens (n=3) were processed for Scanning Electron Microscopy (SEM) for surface and cross-sectional morphological analysis. Nine specimens (n=1) were processed for Transmission Electron Microscopy (TEM) and twenty seven (n=3) were restored to evaluate the adhesive interface. For the microtensile bond strength (^TBS) test, 45 flat occlusal dentin surfaces were restored and after storage in water for 24h, were submitted to ^TBS test. ANOVA (=5%) showed that G1 (control group) presented the highest ^TBS values when compared with the irradiated groups, which did not differ from each other. SEM analysis showed an irregular scaly surface, free of smear layer and with open dentinal tubules. The cross-sectional dentin micrographs showed that the effects of laser extended to the dentin subsurface resulting in a pattern of tags modified in the hibridization process. The findings of this in vitro study showed that both Er:YAG and Er,Cr:YSGG laser irradiation resulted in a specific morphological pattern of dentin that negatively affects the bond strength to resin composite to such dentin.
860

Estudo do compósito 3Y-TZP/Sisub(2)Nsub(2)O obtido por sinterização sem pressão

SANTOS, CARLOS A.X. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:51:50Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:08:58Z (GMT). No. of bitstreams: 0 / Zircônia 3YTZP apresenta propriedades excelentes à temperatura ambiente, mas estas propriedades são afetadas pelo aumento da temperatura pois esta age negativamente sobre o mecanismo de transformação de fase induzida por tensão, que fortalece a tenacidade da matriz. A adição de Si3N4 e SiC em uma matriz de 3YTZP é muito interessante porque conduz à formação de oxinitreto de silício, melhorando as propriedades mecânicas tais como dureza e tenacidade, mas esta adição está limitada por várias dificuldades que se apresentam durante o processamento e sinterização destes materiais. Neste trabalho foi estudada a obtenção, por sinterização sem pressão, do compósito Y-TZP/Si2N2O, partindo-se da adição de 20vol%Si3N4-SiC em uma matriz de zircônia dopada com 3mol% de Y2O3 - 3YTZP, utilizando-se Al2O3 e Y2O3 como aditivos de sinterização. A mistura foi moída e moldada por prensagem isostática a frio. Amostras foram sinterizadas a 1500º, 1600º e 1700ºC por 2h sem pressão e em atmosfera ambiente, utilizando-se um leito de nitreto de silício. Após sinterização, as amostras foram caracterizadas por difração de raios-X. Foram medidas a densidade, tenacidade, dureza e resistência mecânica à flexão em temperatura ambiente. A estrutura do material foi observada em microscopia eletrônica de varredura e de transmissão, com mapeamento químico, para verificar a homogeneidade e morfologia das fases do compósito. A formação de Si2N2O foi observada no material sinterizado devido à reação entre os pós adicionados. O material obtido apresentou aumento de tenacidade e dureza com o aumento de temperatura de sinterização. As amostras apresentaram boa resistência à oxidação a 1000ºC. / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP

Page generated in 0.0798 seconds