21 |
Excitation électrique de plasmons de surface avec un microscope à effet tunnel / Electrical excitation of surface plasmons with a scanning tunneling microscopeWang, Tao 18 July 2012 (has links)
Pour la première fois, en associant un microscope à effet tunnel (STM) et un microscope optique inversé,nous avons imagé les plasmons de surface excités électriquement sur un film d’or avec la pointe d’un STM.Par microscopie de fuite radiative, en observant l’image de l’interface air/or et celle du plan de Fourierassocié, nous avons distingué les plasmons propagatifs des plasmons localisés sous la pointe. Les plasmonspropagatifs sont caractérisés par une distance de propagation et une direction d’émission en accord aveccelles de plasmons propagatifs créés par excitation laser sur des films d’or de mêmes épaisseurs. Les fuitesradiatives des plasmons localisés s’étalent jusqu’à l’angle maximum d’observation. Plasmons propagatifs etlocalisés ont une large bande spectrale dans le visible. Si la pointe est plasmonique (en argent), lesplasmons localisés ont une composante supplémentaire due au couplage associé. Pour différents types depointe, nous avons déterminé les intensités relatives des plasmons localisés et propagatifs. Nous trouvonsque chaque mode plasmon (propagatif ou localisé) peut être préférentiellement sélectionné en modifiant lematériau de la pointe et sa forme. Une pointe en argent produit une intensité élevée de plasmons localisés,tandis qu’une pointe fine de tungstène (rayon de l’apex inférieur à 100 nm) produit essentiellement desplasmons propagatifs. Nous avons étudié la cohérence spatiale des plasmons propagatifs excités par la pointe du STM. Avec un film d’or opaque (épaisseur 200 nm) percé de paires de nanotrous nous avons réalisé une expérienceanalogue à celle des fentes d’Young. Des franges d’interférences sont observées. La mesure de leurvisibilité en fonction de la distance des nanotrous donne une longueur de cohérence des plasmons de 4.7±0.5 μm. Cette valeur, très proche de la valeur 3.7± 1.2 μm déduite de la largeur de la distribution spectraledes plasmons, indique que l’élargissement spectral des plasmons propagatifs est homogène.Nous avons aussi étudié la diffusion des plasmons propagatifs excités par la pointe du STM par desnanoparticules d’or déposées sur un film d’épaisseur 50 nm. Nous observons une diffusion élastique et unediffusion radiative. Des franges d’interférences sont observées dans la région d’émission lumineuseinterdite du plan de Fourier, dont la période est inversement proportionnelle à la distancepointe-nanoparticule d’or avec un facteur de proportionnalité égal à la longueur d’onde moyenne desplasmons. Il y a donc interférence entre la radiation des plasmons localisés et la radiation provenant de ladiffusion des plasmons propagatifs sur les nanoparticules d’or. Ceci indique que les plasmons localisés etpropagatifs excités électriquement par la pointe du STM sont différentes composantes du plasmon uniqueproduit par effet tunnel inélastique avec la pointe du STM. Ces résultats originaux sur les plasmons créés sur film d’or par un effet tunnel inélastique localisé à l’échelle atomique (i) élargissent la compréhension du processus et (ii) offrent des perspectives intéressantes pour une association de la nanoélectronique et de la nanophotonique. / For the first time, using a equipment combining a scanning tunneling microscope (STM) and an invertedoptical microscope, we excite and directly image STM-excited broadband propagating surface plasmons ona thin gold film. The STM-excited propagating surface plasmons have been imaged both in real space andFourier space by leakage radiation microscopy. Broadband localized surface plasmons due to the tip-goldfilm coupled plasmon resonance have also been detected. Quantitatively, we compare the intensities ofSTM-excited propagating and localized surface plasmons obtained with different STM tips. We find that the intensity of each plasmon mode can be selectively varied by changing the STM tip shape or material composition. A silver tip produces a high intensity of localized surface plasmons whereas a sharp (radius < 100 nm) tungsten tip produces mainly propagating surface plasmons. We have investigated the coherence of STM-excited propagating surface plasmons by performingexperiments on a 200 nm thick (opaque) gold film punctured by pairs of nanoholes. This work is analogousto Young’s double-slit experiment, and shows that STM-excited propagating surface plasmons have acoherence length of 4.7±0.5 μm. This coherent length is very close to the value 3.7±1.2 μm expected fromthe spectrum, which indicates that the spectrum broadening of STM-excited surface plasmons ishomogeneous. We have also studied the in-plane and radiative scattering of STM-excited propagating surface plasmons bygold nanoparticles deposited on a 50 nm thick gold film. In the Fourier space images, interference fringesare observed in the forbidden light region. This interference occurs between STM-excited localized surfaceplasmons (radiating at large angles from the tip position) and the radiative scattering by the goldnanoparticle of STM-excited propagating surface plasmons. This indicates that STM-excited localized andpropagating surface plasmons are different components of the same single plasmon produced by inelasticelectron tunneling with the STM tip. These results not only broaden the understanding about the excitation process of STM excited surface plasmons but also offer interesting perspectives for the connection between nanoelectronics andnanophotonics.
|
22 |
Impact Of Energy Quantization On Single Electron Transistor Devices And CircuitsDan, Surya Shankar 03 1900 (has links)
Although scalingof CMOS technology has been predicted to continue for another decade, novel technological solutions are required to overcome the fundamental limitations of the decananometer MOS transistors. Single Electron Transistor (SET) has attracted attention mainly because of its unique Coulomb blockade oscillations characteristics, ultra low power dissipation and nanoscale feature size. Despite the high potential, due to some intrinsic limitations (e.g., very low current drive) it will be very difficult for SET to compete head-to-head with CMOS’s large-scale infrastructure, proven design methodologies, and economic predictability. Nevertheless, the characteristics of SET and MOS transistors are quite complementary. SET advocates low-power consumption and new functionality (related to the Coulomb blockade oscillations), while CMOS has advantages like high-speed driving and voltage gain that can compensate the intrinsic drawbacks of SET. Therefore, although a complete replacement of CMOS by single-electronics is unlikely in the near future, it is also true that combining SET and CMOS one can bring out new functionalities, which are unmirrored in pure CMOS technology. As the hybridization of CMOSand SET is gaining popularity, silicon SETs are appearing to be more promising than metallic SETs for their possible integration with CMOS. SETs are normally studied on the basis of the classical Orthodox Theory, where quantization of energy states in the island is completely ignored. Though this assumption greatly simplifies the physics involved, it is valid only when the SET is made of metallic island. As one cannot neglect the quantization of energy states in a semi conductive island, it is extremely important to study the effects of energy quantization on hybrid CMOSSET integrated circuits. The main objectives of this thesis are: (1) understand energy quantization effects on SET by numerical simulations; (2) develop simple analytical models that can capture the energy quantization effects; (3)analyze the effects of energy quantization on SET logic inverter, and finally; (4)developa CAD framework for CMOS-SETco-simulation and to study the effects of energy quantization on hybrid circuits using that framework.
In this work the widely accepted SIMON Monte Carlo (MC) simulator for single electron devices and circuits is used to study the effects of energy quantization. So far SIMON has been used to study SETs having metallic island. In this work, for the first time, we have shown how one can use SIMON to analyze SET island properties having discrete energy states.It is shown that energy quantization mainly changes the Coulomb Blockade region and drain current of SET devices and thus affects the noise margin, power dissipation, and the propagation delay of SET logic inverter. Anew model for the noise margin of SET inverter is proposed, which includes the energy quantization term. Using the noise margin as a metric, the robustness of SET inverter is studied against the effects of energy quantization. An analytical expression is developed, which explicitly defines the maximum energy quantization (termedas “Quantization Threshold”)that an SET inverter logic circuit can withstand before its noise margin upper bound crosses the acceptable tolerance limit. It is found that SET inverter designed with CT : CG =0.366 (where CT and CG are tunnel junction and gate capacitances respectively) offers maximum robustness against energy quantization. Then the effects of energy quantization are studied for Current biased SET (CBS), which is an integral part of almost all hybrid CMOS-SET circuits. It is demonstrated that energy quantization has no impact on the gain of the CBS characteristics though it changes the output voltage levels and oscillation periodicity. The effects of energy quantization are further studied for two circuits: Negative Differential Resistance (NDR) and Neurone Cell, which use CBS. A new model for the conductance of NDR characteristics is also formulated that includes the energy quantization term. A novel CAD framework is then developed for CMOS-SET co-simulation, whichuses MCsimulator for SET devices alongwithconventional SPICE. Using this framework, the effects of energy quantization are studied for some hybrid circuits, namely, SETMOS, multiband voltage filter, and multiple valued logic circuits. It is found that energy quantization degrades the performance of hybrid circuit, which could be compensated by properly tuning the bias current of SET devices. Though this study is primarily done by exhaustive MC simulation, effort has also been put to develop first order compact model for SET that includes energy quantization effects. Finally it has been demonstrated that the SET behavior under energy quantization can be predicted byslightlymodifyingthe existing SETcompact models that are valid for metallic devices having continuous energy states.
|
23 |
Quantum Transport Through Carbon Nanotubes Functionalized With Antiferromagnetic MoleculesSchnee, Michael 12 August 2019 (has links)
The subject of this thesis is to study the interaction between carbon nanotubes (CNTs) and antiferromagnetic tetrametallic molecules attached to them. By employing quantum transport measurements, the sensitivity to sense the interactions is greatly increased, because the quantum dot is very susceptible to changes in its environment. The properties of carbon nanotubes can be altered by chemical functionalization with the aforementioned molecules, where the attachment is performed covalently via a ligand exchange with the CNT. The thesis is partitioned into two main parts: the first part presents experiments performed on tetramanganese functionalized CNTs, whereas for the second similar studies are conducted, except manganese is replaced by cobalt. Both complexes exhibit an antiferromagnetic ground state, yet the metal spin of manganese (S=5/2) is reduced to S=3/2 for cobalt. Additionally, an altered device preparation has been employed during the second part, leading to a strong suppression of the background signal. Quantum transport measurements at T=4K on manganese-functionalized CNTs show a very regular pattern of Coulomb diamonds, indicating only a mild disturbance of the quantum dot's electron system by the covalent bond. Moreover, the charging energy reveals a wave function extending over the entire device dimensions. However, at T=30mK in the tunneling current a strong noise emerges, when repeatedly measuring over an hour while keeping external biases constant. Additionally, these time traces are superimposed by a long-term background, which is removed by a correction algorithm plus a subsequent digitization. The remaining signal reveals a random telegraph signal (RTS) which is extensively studied and from its statistics the equivalent temperature of T=654mK for the excitation of the system is extracted. The quantum transport experiments conducted on cobalt-functionalized CNTs show a much better data quality of the coulomb diamonds, which is ascribed to the alteration in the device's preparation. From the line shape of the Coulomb oscillations as well as from the Coulomb staircases an electron temperature of about T=500mK is extracted. Moreover, a magnetic field dependence of the stability diagrams is apparent, attributable to Zeeman splitting. The respective Landé factor of g=1.73 is, compared to similar CNT quantum dot systems, unusually low. It is as attributed to an increased spin-orbit interaction between the conduction electrons and the cobalt's nuclei. The respective time traces exhibit or lack an RTS signal, depending on their external biases. Regarding the Coulomb diamonds, an essential prerequisite for the occurrence of an RTS is the proximity to a resonance, which is equatable to a high sensitivity of the quantum dot detector. Considering the available energy, the underlying process that is the cause for the emergence of the RTS is ascertained to be an internal excitation of the antiferromagnetic states of the metallic core.
|
24 |
Inelastic Electron Tunneling Spectroscopy with the Scanning Tunneling Microscope : a combined theory-experiment approach / La Spectroscopie par Effet Tunnel Inélastique avec un Microscope à Effet Tunnel : une approche combinée de la théorie et de l'expérienceBurema, Shiri 01 July 2013 (has links)
La Spectroscopie par Effet Tunnel Inélastique (IETS) avec un Microscope à Effet Tunnel (STM) est une nouvelle technique de spectroscopie vibrationnelle, qui permet de caractériser des propriétés très fines de molécules adsorbées sur des surfaces métalliques. Des règles de selection d’excitation vibrationnelle basées sur la symétrie ont été proposées, cependant, elles ne semblent pas exhaustives pour expliquer la totalité du mécanisme et des facteurs en jeu; elles ne sont pas directement transposables pour les propriétés d'un adsorbat et sont lourdes d'utilisation. Le but de cette thèse est donc d'améliorer ces règles de selection par une étude théorique. Un protocole de simulation de l'IETS a été développé, paramétré, et évalué, puis appliqué pour calculer des spectres IETS pour différentes petites molécules, qui sont systématiquement liées, sur une surface de cuivre. Des principes additifs de l'IETS ont été developpés, notamment concernant l’extension dans le vide de l’état de tunnel, l'activation/ quench sélectif de certains modes du aux propriétés électroniques de certains fragments moléculaires, et l'application de certaines règles d'addition de signaux IETS. De plus, des empreintes vibrationnelles par des signaux IETS ont été determinées pour permettre de différentier entre les orientations des adsorbats, la nature chimique des atomes et les isomères de structures. Une stratégie simple utilisant les propriétés de distribution de la densité électronique de la molécule isolée pour prédire les activités IETS sans des couts importants de calculs a aussi été développée. Cette expertise a été utilisée pour rationaliser et interpréter les mesures expérimentales des spectres IETS pour des métalloporphyrines et métallophtalocyanines adsorbées. Ces études sont les premières études IETS pour des molécules aussi larges et complexes. L'approche expérimentale a permis de déterminer les limitations actuelles des simulations IETS. Les défauts associés à l'identification ont été résolus en faisant des simulations d'images STM complémentaires. / Inelastic Electron Tunneling Spectroscopy (IETS) with the Scanning Tunneling Microscope (STM) is a novel vibrational spectroscopy technique that permits to characterize very subtle properties of molecules adsorbed on metallic surfaces. Its proposed symmetry-based propensity selection rules, however, fail to fully capture its exact mechanism and influencing factors; are not directly retraceable to an adsorbate property and are cumbersome. In this thesis, a theoretical approach was taken to improve them. An IETS simulation protocol has been developed, parameterized and benchmarked, and consequently used to calculate IETS spectra for a set of systematically related small molecules on copper surfaces. Extending IETS principles were deduced that refer to the tunneling state’s vacuum extension, the selective activating/quenching of certain types of modes due to the moieties’ electronic properties, and the applicability of a sum rule of IETS signals. Also, fingerprinting IETS-signals that enable discrimination between adsorbate orientations, the chemical nature of atoms and structural isomers were determined and a strategy using straightforward electronic density distribution properties of the isolated molecule to predict IETS activity without (large) computational cost was developed. This expertise was used to rationalize and interpret experimentally measured IETS spectra for adsorbed metalloporphyrins and metallophthalocyanines, being the first IETS studies of this large size. This experimental approach permitted to determine the current limitations of IETS-simulations. The associated identification shortcomings were resolved by conducting complementary STM-image simulations.
|
Page generated in 0.0873 seconds