• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 205
  • 21
  • 12
  • 12
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 334
  • 334
  • 49
  • 48
  • 46
  • 31
  • 28
  • 27
  • 27
  • 25
  • 22
  • 22
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

A real-space approach to surface and defect states

Woodley, Scott Marcus January 1997 (has links)
No description available.
92

Transport experiments in undoped GaAs/A1GaAs heterostructures

Mak, Wing Yee January 2013 (has links)
No description available.
93

First principles theory for quantum transport : effects of strong correlation

Marcotte, Étienne. January 2008 (has links)
No description available.
94

Spin Pumping in Lateral Double Quantum Dot Systems

Pelton, Sabine S. 01 January 2012 (has links)
Electron transport in single lateral quantum dot (QD) and parallel lateral double quantum dot (DQD) systems is modeled using semiclassical rate equations. The Zeeman effect, in conjunction with resonant tunneling, is used to select the spin of electrons involved in transport. We show adiabatic spin pumping by periodic variation of the systems' confining parameters, namely the quantum point contacts (QPCs) dictating the boundaries of the dots, and the gate voltage applied to each dot. The limitations of adiabatic spin pumping are subsequently examined by counting the average spin pumped per cycle when frequency and interdot capacitance are adjusted.
95

Investigation of Optical and Electronic Properties of Au Decorated MoS2

Bhanu, Udai 01 January 2015 (has links)
Achieving tunability of two dimensional (2D) transition metal dichalcogenides (TMDs) functions calls for the introduction of hybrid 2D materials by means of localized interactions with zero dimensional (0D) materials. A metal-semiconductor interface, as in gold (Au) - molybdenum disulfide (MoS2), is of great interest from the standpoint of fundamental science as it constitutes an outstanding platform to investigate optical and electronic properties due to charge transfer. The applied aspects of such systems introduce new options for electronics, photovoltaics, detectors, catalysis, and biosensing. Here in this dissertation, we study the charge transfer interaction between Au nanoparticals and MoS2 flakes and its effect on Photoluminescence and electronic transport properties. The MoS2 was mechanically exfoliated from bulk single crystal. Number of layers in the flake was identified with the help of AFM and Raman Spectra. Au was deposited by physical vapor deposition method (PVD) in multiple steps to decorate MoS2 flakes. We first study the photoluminescence of pristine and Au decorated MoS2 and shows that in the presence of Au, the photoluminescence of MoS2 quenches significantly. We infer that the PL quenching can be attributed to a change in the electronic structure of the MoS2-Au system. The difference in Fermi level of a of MoS2 and Au results in a 0.4 eV energy level offset, which causes a band bending in the MoS2-Au hybrid. Upon illumination, the electrons in the excited state of MoS2 transfer to Au, leaving a hole behind, thus cause p-doping in MoS2. As electrons from MoS2 are transferred to Au, they do not decay back to their initial ground state, leading to PL quenching in the hybrid system. To study the effect of Au deposition on electronic properties of ultra-thin and multilayers MoS2 flakes, we have fabricated MoS2 FETs from (1) ultra-thin sample (2-4 MoS2 layers) and (2) multilayers samples (more than 20 layers). After each deposition of Au, we measured the electrical characteristics of FET at room temperature. We show that the threshold voltage shifts towards the positive gate voltage as we increase the thickness of Au. This shift in threshold voltage is indicative of p doping of the MoS2. We further show that the field effect mobility of MoS2 FET decrease with Au thickness. We have quantitatively estimated the charge transferring from MoS2 to Au.
96

Synthetic biological study on cyclic electron transport around photosystem I in Arabidopsis / シロイヌナズナの光化学系I周辺サイクリック電子伝達に関する合成生物学的研究

Zhou, Qi 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23740号 / 理博第4830号 / 新制||理||1691(附属図書館) / 京都大学大学院理学研究科生物科学専攻 / (主査)教授 鹿内 利治, 教授 松下 智直, 准教授 竹中 瑞樹 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
97

Spin-dependent electron transport in nanoscale samples

Wei, Yaguang 14 November 2007 (has links)
In this thesis, we describe the research in which we use metallic nanoparticles to explore spin-dependent electron transport at nanometer scale. Nanoscale samples were fabricated by using a state of the art electron beam lithography and shadow evaporation technique. We have investigated spin relaxation and decoherence in metallic grains as a function of bias voltage and magnetic field at low temperatures (down to ∼ 30mK). At low temperatures, the discrete energy levels within a metallic nanoparticle provides a new means to study the physics of the spin-polarized electron tunneling. We describe measurements of spin-polarized tunneling via discrete energy levels of single Aluminum grain. Spin polarized current saturates quickly as a function of bias voltage, which demonstrates that the ground state and the lowest excited states carry spin polarized current. The ratio of electron-spin relaxation time (T1) to the electron-phonon relaxation rate is in quantitative agreement with the Elliot-Yafet scaling, an evidence that spin-relaxation in Al grains is driven by the spin-orbit interaction. The spin-relaxation time of the low-lying excited states is T1 ¡Ö 0.7 µs and 0.1 µs in two samples, showing that electron spin in a metallic grain could be a potential candidate for quantum information research. We also present measurements of mesoscopic resistance fluctuations in cobalt nanoparticles at low temperature and study how the fluctuations with bias voltage, bias fingerprints, respond to magnetization-reversal processes. Bias fingerprints rearrange when domains are nucleated or annihilated. The domain wall causes an electron wave function-phase shift of ∼ 5 ¦Ð. The phase shift is not caused by the Aharonov-Bohm effect; we explain how it arises from the mistracking effect, where electron spins lag in orientation with respect to the moments inside the domain wall. The dephasing length at low temperatures is only 30 nm, which is attributed to the large magnetocrystalline anisotropy in Co. xi
98

Electrochemical capacitance in a mesoscopic structure

趙學安, Zhao, Xuean. January 1999 (has links)
published_or_final_version / Physics / Doctoral / Doctor of Philosophy
99

Short-Period Transient Grating Measurement of Perpendicular Transport in GaAs/AlGaAs Multiple Quantum Wells

Norwood, David P. 08 1900 (has links)
In this thesis the author describes the use of transient grating techniques to study the transport of electrons and holes perpendicular to the layers of a GaAs/AlGaAs multiple quantum well (MQW).
100

Directed Biomolecular Assembly of Functional Nanodevices

Penzo, Erika January 2014 (has links)
One of the objectives of nanotechnology is to develop ways to build functional nanoscale devices from nanostructures. Whether these nanodevices will constitute the basis for new technologies rests on the ability to precisely manipulate the nanostructures in such a way that large numbers of functional devices can be built in parallel, with each nanodevice precisely located and addressed. In this work nanostructures dispersed in solution are organized onto surfaces by means of molecular-scale directed assembly. This technique combines top down high resolution lithographic patterning to bottom up self-assembly: specific molecular interactions take place at locations precisely defined by lithography, resulting in the parallel assembly of an arbitrarily large number of devices into complex and precisely ordered arrangements. While different molecules are used in this study, DNA plays a key role throughout the work due to the specificity of its interactions, its programmability and outstanding chemical flexibility. Two approaches are developed to direct the assembly of nanostructures on a surface. The first involves the patterning and selective functionalization of metallic nanodots that are used as anchors for the attachment of DNA molecules, proteins, DNA nanostructures and single-wall carbon nanotube (SWCNT) segments wrapped by DNA. Different strategies are explored to maximize the yield of the desired assembly. This platform also allows the monitoring of DNA-protein interactions with single molecule resolution, which has many potential biomedical applications. In the second approach, lithographic patterning is used to define regions of high surface energy that promote the binding of DNA origami and SWCNT segments. The high patterning resolution again allows for single nanostructure manipulation. This method facilitates the assembly of SWCNT field effect transistors from DNA-wrapped SWCNT segments. The formation of multi-component nano-objects in solution, by directing the linkage of properly functionalized nanostructures, is also studied. The products of these reactions are suitable for surface placement with the developed directed assembly techniques, thereby resulting in a hierarchical directed assembly process. Among others, the synthesis of SWCNT-dsDNA heterostructures is described. These hybrid objects can be used to electrically probe dsDNA using the SWCNTs as electrodes, by assembling solid state devices by means of the directed assembly methods, and also by conductive AFM. The results of some electrical measurements of double stranded DNA are discussed. The techniques developed in this thesis are directly applicable to fundamental studies of electron transport in molecules and other nanostructures, but they also have utility in other fields, such as chemistry and biology, where single molecule resolution is required. In addition, the approaches developed in this work may facilitate the advancement of new electronics technologies, including, but not limited to, future circuits based on single-wall carbon nanotubes with specific electronic properties.

Page generated in 0.0818 seconds