1 |
The Electronic Spectra of S2OPatrick McBride, John Oliver 10 1900 (has links)
<p> Three electronic absorption systems of the S2O molecule, each having discrete vibrational structure, were observed in the spectral region 2000 - 7400 Ȧ. Long pressure path lengths were used to observe very weak absorption bands. Two of these spectral systems have not been observed previously. Vibrational analyses of the spectral systems were made. The quasilinear character of the ground electronic state of S2O has been established.</p> / Thesis / Doctor of Philosophy (PhD)
|
2 |
The Electronic Spectra of the Fluorosulfate RadicalWarren, Charles 10 1900 (has links)
<p> Three electronic absorption systems of the fluorosulfate
radical in the gas phase have been observed in the near
infrared and visible regions of the spectra and have been
assigned to the electronic transitions 2E(2) - 2A2,
2E(l)- 2A2 and 2A1- 2A2 . Molecular orbital calculations on the
fluorosulfate radical have been done in order to aid the
interpretation of the electronic spectra of the radical.
Vibrational and rotational analyses of the visible absorption
system ( 2E (2)- 2A 2) have been carried out. The geometry of
the radical in the upper 2 E(2) state has been found to be
similar to that of the 2A2 ground state. The ground state
fundamental frequencies of the radical have been determined.
The presence of a Jahn-Teller-spin-orbit interaction has been
proposed for the 2E(2) state. </p> / Thesis / Doctor of Philosophy (PhD)
|
3 |
The Vibrational and Electronic Spectra of EthynylbenzeneSo, Suk Ping 05 1900 (has links)
<p> The infrared and Raman spectra of ethynylbenzene-h6, -d1, -d5 and -d6 have been analysed, and the fundamental frequencies assigned.</p> <p> Vibrational analyses of the electronic spectra of ethynylbenzene-h6, -d1, -d5 and -d6 in the 2900-2500 Å region have
been carried out. The transition is identified as an allowed A~1B2<--X~1A1 transition. A very strong "forbidden" component, which borrows intensity from a B~1A1<--X~1A1 transition by vibronic interactions, also appears in the spectrum.</p> <p> Semi-empirical LCAO-SCF-MO-CI calculations predict the lowest singlet excited state to be of B2 symmetry, at an energy
above the ground state close to the experimental values.</p> <p> Rotational band contour analysis substantiates the observation that both A- and B-type bands are present in the
electronic spectrum. Ethynylbenzene remains planar and shows little geometrical change on electronic excitation.</p> / Thesis / Doctor of Philosophy (PhD)
|
4 |
Propriedades eletrônicas de átomos e moléculas em fluidos supercríticos / Electronic properties of atmos and molecules in supercritical fluidsCardenuto, Marcelo Hidalgo 09 August 2013 (has links)
Neste trabalho apresentamos alguns estudos teóricos sobre propriedades eletrônicas de sistemas atômicos e moleculares em fase líquida e ambiente supercrítico. A utilização dos fluidos supercríticos têm atraído muito interesse como meio solvente para propriedades moleculares, reações químicas e são vistos como alternativa aos solventes orgânicos t´óxidos. Assim como nos solventes convencionais, descrever suas propriedades por meio de estudos em n´nível molecular tem se tornado tão interessante quanto seu uso prático. Primeiramente realizamos o estudo da polarizabilidade estática do argônio e como esta propriedade se comporta em função da variação de pressão. Fizemos também um estudo deste sistema em torno do ponto crítico e região supercrítica. Dentro do intervalo de pressão que estudamos, não observamos variações significativas na polarizabilidade, embora no regime de baixas densidades este sistema apresentou certa dependência da polarizabilidade com a densidade. Neste estudo, também calculamos a constante dielétrica no ponto crítico. Em seguida estudamos o espectro de absorção do ´átomo de xenônio em ambiente formado por argônio líquido. Nesta parte, realizamos várias simulações com o objetivo de verificar o deslocamento da linha de absorção 5p 6s deste ´átomo em relação `a densidade, explorando também as condições supercríticas. Observamos que o deslocamento do espectro ocorrido em meio solvente é para maiores energias (blue shift) `a medida que a densidade aumenta, e obtemos bom acordo com os valores medidos. Por ultimo, realizamos um estudo da mudança de um espectro eletrônico molecular onde o solvente é a ´agua supercrítica. Utilizamos a molécula paranitroanilina como sonda solvatocromica, e observamos que mesmo no regime de alta temperatura e baixa densidade ainda ocorre a formação de ligações de hidrogênio entre soluto e solvente. Obtemos um red shift para a transição eletrônica em agua supercrítica. Este resultado é medido experimentalmente tanto para ´agua em condições ambiente como em condição supercrítica, mas em ´agua supercrítica o deslocamento ´e menor. Nosso resultado para a agua supercrítica está em bom acordo com o resultado experimental e mostra que a maior contribuição para este deslocamento ´e devido ao efeito das interações eletrostáticas. Porém, ao compararmos os resultados da ´agua em condições supercríticas com as condições normais de temperatura e pressão e o dióxido de carbono supercrítico como solventes, os resultados indicam que a aproximação de incluir apenas interações eletrostáticas ´e menos satisfatória e fornece somente parte do efeito de solvente. / In this work we present some theoretical studies of the electronic properties of atomic and molecular systems in liquid and supercritical environments. The study of supercritical fluids is a interesting topic in solvent effects on molecular properties and chemical reactions. Their use can be an alternative to organic toxic solvents. Describing their molecular solvent properties, as opposite to conventional solvents, has become important as of pratical use. First we study the static polarizability of atomic argon and its behavior with pressure. The critical and near critical points also were considered in this study. In the range of pressures used, it is not observed significant changes in the polarizability, although the system present some dependence with density in the supercritical region. We have then determined the dielectric constant at the critical point. Next we study the absorption electronic spectra of xenon atom in liquid argon environment. In this part, we performed several simulations with the aim of verifying the density dependence of the spectral shift of the 5p 6s line of xenon. The supercritical region was also explored. We obtain the spectral blue shift in solvent environment for increasing density in good agreement with experiments. Finally, we study the electronic spectra of a solvatochromic probe molecule, the paranitroaniline, in supercritical water and supercritical carbon dioxide. We observe that even for high temperature hydrogen bond persists between the solute and the water molecules. A red shift in the transition of the electronic spectra of paranitroaniline is well described. This red shift is observed experimentally in water, but in supercritical water it is less pronounced. Our results for supercritical water is in good agreement with the experimental result and show that the long-range electrostatic contribution dominates the solute-solvente interaction and gives the largest influence in the calculated spectrum. Water in normal conditions and supercritical carbon dioxide were also considered for comparison and the results indicates that including only the electrostatic contribution is less satisfactory and gives only part of the total solvent effect.
|
5 |
Propriedades eletrônicas de átomos e moléculas em fluidos supercríticos / Electronic properties of atmos and molecules in supercritical fluidsMarcelo Hidalgo Cardenuto 09 August 2013 (has links)
Neste trabalho apresentamos alguns estudos teóricos sobre propriedades eletrônicas de sistemas atômicos e moleculares em fase líquida e ambiente supercrítico. A utilização dos fluidos supercríticos têm atraído muito interesse como meio solvente para propriedades moleculares, reações químicas e são vistos como alternativa aos solventes orgânicos t´óxidos. Assim como nos solventes convencionais, descrever suas propriedades por meio de estudos em n´nível molecular tem se tornado tão interessante quanto seu uso prático. Primeiramente realizamos o estudo da polarizabilidade estática do argônio e como esta propriedade se comporta em função da variação de pressão. Fizemos também um estudo deste sistema em torno do ponto crítico e região supercrítica. Dentro do intervalo de pressão que estudamos, não observamos variações significativas na polarizabilidade, embora no regime de baixas densidades este sistema apresentou certa dependência da polarizabilidade com a densidade. Neste estudo, também calculamos a constante dielétrica no ponto crítico. Em seguida estudamos o espectro de absorção do ´átomo de xenônio em ambiente formado por argônio líquido. Nesta parte, realizamos várias simulações com o objetivo de verificar o deslocamento da linha de absorção 5p 6s deste ´átomo em relação `a densidade, explorando também as condições supercríticas. Observamos que o deslocamento do espectro ocorrido em meio solvente é para maiores energias (blue shift) `a medida que a densidade aumenta, e obtemos bom acordo com os valores medidos. Por ultimo, realizamos um estudo da mudança de um espectro eletrônico molecular onde o solvente é a ´agua supercrítica. Utilizamos a molécula paranitroanilina como sonda solvatocromica, e observamos que mesmo no regime de alta temperatura e baixa densidade ainda ocorre a formação de ligações de hidrogênio entre soluto e solvente. Obtemos um red shift para a transição eletrônica em agua supercrítica. Este resultado é medido experimentalmente tanto para ´agua em condições ambiente como em condição supercrítica, mas em ´agua supercrítica o deslocamento ´e menor. Nosso resultado para a agua supercrítica está em bom acordo com o resultado experimental e mostra que a maior contribuição para este deslocamento ´e devido ao efeito das interações eletrostáticas. Porém, ao compararmos os resultados da ´agua em condições supercríticas com as condições normais de temperatura e pressão e o dióxido de carbono supercrítico como solventes, os resultados indicam que a aproximação de incluir apenas interações eletrostáticas ´e menos satisfatória e fornece somente parte do efeito de solvente. / In this work we present some theoretical studies of the electronic properties of atomic and molecular systems in liquid and supercritical environments. The study of supercritical fluids is a interesting topic in solvent effects on molecular properties and chemical reactions. Their use can be an alternative to organic toxic solvents. Describing their molecular solvent properties, as opposite to conventional solvents, has become important as of pratical use. First we study the static polarizability of atomic argon and its behavior with pressure. The critical and near critical points also were considered in this study. In the range of pressures used, it is not observed significant changes in the polarizability, although the system present some dependence with density in the supercritical region. We have then determined the dielectric constant at the critical point. Next we study the absorption electronic spectra of xenon atom in liquid argon environment. In this part, we performed several simulations with the aim of verifying the density dependence of the spectral shift of the 5p 6s line of xenon. The supercritical region was also explored. We obtain the spectral blue shift in solvent environment for increasing density in good agreement with experiments. Finally, we study the electronic spectra of a solvatochromic probe molecule, the paranitroaniline, in supercritical water and supercritical carbon dioxide. We observe that even for high temperature hydrogen bond persists between the solute and the water molecules. A red shift in the transition of the electronic spectra of paranitroaniline is well described. This red shift is observed experimentally in water, but in supercritical water it is less pronounced. Our results for supercritical water is in good agreement with the experimental result and show that the long-range electrostatic contribution dominates the solute-solvente interaction and gives the largest influence in the calculated spectrum. Water in normal conditions and supercritical carbon dioxide were also considered for comparison and the results indicates that including only the electrostatic contribution is less satisfactory and gives only part of the total solvent effect.
|
6 |
The Electronic Spectra of the Oxalyl HalidesBalfour, Joseph Walter 09 1900 (has links)
<p>The near-ultraviolet vapour-phase absorption spectra of oxalyl fluoride, oxalyl chloride and oxalyl bromide have been investigated under low, medium and high resolution. Two discrete spectral systems have been observed for each of these molecules. The transitions responsible for the electronic spectra have been identified as singlet-singlet and singlet-triplet transitions associated with n ➛π * orbital electron promotion. The vibrational and rotational structures accompanying these transitions have been analyzed and are in general agreement with theoretical predictions. The molecules remain planar and trans in their excited states.</p> / Doctor of Philosophy (PhD)
|
7 |
Propriedades espectroscópicas do ácido orto-aminobenzóico: estudo computacional e experimental de efeitos de pH / Spectroscopic properties of the ortho-aminobenzoic acid: An computational and experimental study of the effects of pH.Danilo da Silva Olivier 26 March 2012 (has links)
A molécula de ácido orto-aminobenzóico tem sido intensamente empregada como sonda fluorescente no estudo de peptídeos e membranas e o entendimento dos efeitos de solvente sobre suas propriedades espectroscópicas apresenta grande interesse científico. Neste trabalho realizamos um estudo experimental e cálculos DFT sobre alterações nos espectros de absorção e emissão da sonda em solução aquosa, em função do pH do meio. Examinamos também o seu derivado 2-amino-N-metil benzamida (o-Abz-NHCH3) e as mudanças espectrais na interação com micelas de SDS. Resultados de experimentos de titulação mostraram-se coerentes com a existência de três estados de protonação para o-Abz à medida em que o pH torna-se ácido, resultantes da protonação dos grupos amino e carboxila, de modo semelhante ao que ocorre com aminoácidos. Para cada estado de protonação, realizamos cálculos de otimização de geometria e verificação de mínima energia com a teoria DFT utilizando diferentes funcionais e conjuntos de bases para orbitais atômicos. Partindo das geometrias de menor energia, com a teoria TD-DFT (B3LYP/311++G(d,p)) fizemos cálculos das transições eletrônicas. A melhor concordância com os resultados experimentais foi obtida com a molécula na forma aniônica. Na comparação dos resultados da posição espectral da transição de mais baixa energia, no processo de absorção ótica, observamos uma diferença relativa de 0,6%. Para a fluorescência otimizamos e verificamos a geometria do estado excitado e obtivemos as energias de transição vertical com o método TD-DFT (B3LYP/Def2-TZVP) com o qual tivemos um resultado de lambda = 407nm considerado satisfatório quando comparado com o valor experimental lambda= 394nm. Nas formas neutra e catiônica, as diferenças relativas entre os cálculos e os experimentos foram maiores, chegando a 11% na posição da banda de fluorescência da molécula neutra. Usando simulações de Dinâmica Molecular conseguimos estimar quantas moléculas de água se distribuem em torno do o-Abz. Os resultados mostram que, embora exista um número parecido de moléculas de água solvatando a molécula nas formas aniônica e catiônica, há uma redução na quantidade de ligações de hidrogênio realizadas pela protonação catiônica em relação à aniônica. O modelo utilizado para simular o o-Abz-NH(CH3) em micelas de SDS apresentou resultados satisfatórios com erro relativo entre 0,7\\% e 0,9%, no entanto são necessárias outras abordagens computacionais e experimentais para indicar em qual região a molécula se encontra na micela, dando assim mais confiabilidade e uma melhor interpretação aos resultados. / The ortho-aminobenzoic acid is a molecule largely employed as a fluorescent probe in peptide and membrane studies. The solvent dependence of its spectroscopic properties deserves great interest and we describe here results of experimental measurements and computational calculations by \\textit and Molecular Dynamics methods about spectroscopic and solvation properties of the molecule in aqueous medium at different pH values. We also examined the derivative 2-amino-N-methyl-benzamide (o-Abz-NHCH3), investigating the spectral modifications in its interaction with SDS micelles. The results of titration experiments could be interpreted as originated from three protonation states for o-Abz: in neutral pH and above, both carboxy and amine groups are deprotonated, and the molecule is in the anionic form. Decreasing the pH, protonation of amino group or carboxy renders the molecule neutral (pK = 5.0) and at low pH both groups are protonated and the molecule is in the cationic form (pK = 2.3). Geometry optimization and determination of energy minima were performed with the molecule in each protonation state using Density Functional Theory (DFT) with different functionals and basis set for atomic orbitals. Eletronic transitions were calculated from lowest energy geometry using TD-DFT (B3LYP/311++G(d,p)). The best agreement with experimental results were obtained for the anionic molecule: we observed a relative difference of 0.6\\% for the lowest energy optical transition. From the optimized geometry of the excited state the vertical transition was calculated with TD-DFT (B3LYP/Def2-TZVP), and the emission was predicted to occur at 407nm, a reasonable result compared with the experimental value or 394nm. For the molecule in neutral or cationic state, the relative differences between experimental and calculation results were greater, amounting to 11\\% for the fluorescence band in the neutral species. From Molecular Dynamics simulation we estimated the number of water molecules distributed aroud the o-Abz molecule. The results show that, although there is similar number of water molecules solvating the o-Abz in anionic and cationic state, there is a decrease in the amount of hydrogen bond in the cationic molecule. The simulation of the derivative o-Abz-NHCH3 in SDS micelles by implicit solvent methods gave results comparable to the experimental ones, with relative deviations lower than 1\\%. It should be noted that further study should be carried out in order to have a better knowledge about the location of the probe in the micelle, and to afford a beter interpretation of the results.
|
8 |
Propriedades espectroscópicas do ácido orto-aminobenzóico: estudo computacional e experimental de efeitos de pH / Spectroscopic properties of the ortho-aminobenzoic acid: An computational and experimental study of the effects of pH.Olivier, Danilo da Silva 26 March 2012 (has links)
A molécula de ácido orto-aminobenzóico tem sido intensamente empregada como sonda fluorescente no estudo de peptídeos e membranas e o entendimento dos efeitos de solvente sobre suas propriedades espectroscópicas apresenta grande interesse científico. Neste trabalho realizamos um estudo experimental e cálculos DFT sobre alterações nos espectros de absorção e emissão da sonda em solução aquosa, em função do pH do meio. Examinamos também o seu derivado 2-amino-N-metil benzamida (o-Abz-NHCH3) e as mudanças espectrais na interação com micelas de SDS. Resultados de experimentos de titulação mostraram-se coerentes com a existência de três estados de protonação para o-Abz à medida em que o pH torna-se ácido, resultantes da protonação dos grupos amino e carboxila, de modo semelhante ao que ocorre com aminoácidos. Para cada estado de protonação, realizamos cálculos de otimização de geometria e verificação de mínima energia com a teoria DFT utilizando diferentes funcionais e conjuntos de bases para orbitais atômicos. Partindo das geometrias de menor energia, com a teoria TD-DFT (B3LYP/311++G(d,p)) fizemos cálculos das transições eletrônicas. A melhor concordância com os resultados experimentais foi obtida com a molécula na forma aniônica. Na comparação dos resultados da posição espectral da transição de mais baixa energia, no processo de absorção ótica, observamos uma diferença relativa de 0,6%. Para a fluorescência otimizamos e verificamos a geometria do estado excitado e obtivemos as energias de transição vertical com o método TD-DFT (B3LYP/Def2-TZVP) com o qual tivemos um resultado de lambda = 407nm considerado satisfatório quando comparado com o valor experimental lambda= 394nm. Nas formas neutra e catiônica, as diferenças relativas entre os cálculos e os experimentos foram maiores, chegando a 11% na posição da banda de fluorescência da molécula neutra. Usando simulações de Dinâmica Molecular conseguimos estimar quantas moléculas de água se distribuem em torno do o-Abz. Os resultados mostram que, embora exista um número parecido de moléculas de água solvatando a molécula nas formas aniônica e catiônica, há uma redução na quantidade de ligações de hidrogênio realizadas pela protonação catiônica em relação à aniônica. O modelo utilizado para simular o o-Abz-NH(CH3) em micelas de SDS apresentou resultados satisfatórios com erro relativo entre 0,7\\% e 0,9%, no entanto são necessárias outras abordagens computacionais e experimentais para indicar em qual região a molécula se encontra na micela, dando assim mais confiabilidade e uma melhor interpretação aos resultados. / The ortho-aminobenzoic acid is a molecule largely employed as a fluorescent probe in peptide and membrane studies. The solvent dependence of its spectroscopic properties deserves great interest and we describe here results of experimental measurements and computational calculations by \\textit and Molecular Dynamics methods about spectroscopic and solvation properties of the molecule in aqueous medium at different pH values. We also examined the derivative 2-amino-N-methyl-benzamide (o-Abz-NHCH3), investigating the spectral modifications in its interaction with SDS micelles. The results of titration experiments could be interpreted as originated from three protonation states for o-Abz: in neutral pH and above, both carboxy and amine groups are deprotonated, and the molecule is in the anionic form. Decreasing the pH, protonation of amino group or carboxy renders the molecule neutral (pK = 5.0) and at low pH both groups are protonated and the molecule is in the cationic form (pK = 2.3). Geometry optimization and determination of energy minima were performed with the molecule in each protonation state using Density Functional Theory (DFT) with different functionals and basis set for atomic orbitals. Eletronic transitions were calculated from lowest energy geometry using TD-DFT (B3LYP/311++G(d,p)). The best agreement with experimental results were obtained for the anionic molecule: we observed a relative difference of 0.6\\% for the lowest energy optical transition. From the optimized geometry of the excited state the vertical transition was calculated with TD-DFT (B3LYP/Def2-TZVP), and the emission was predicted to occur at 407nm, a reasonable result compared with the experimental value or 394nm. For the molecule in neutral or cationic state, the relative differences between experimental and calculation results were greater, amounting to 11\\% for the fluorescence band in the neutral species. From Molecular Dynamics simulation we estimated the number of water molecules distributed aroud the o-Abz molecule. The results show that, although there is similar number of water molecules solvating the o-Abz in anionic and cationic state, there is a decrease in the amount of hydrogen bond in the cationic molecule. The simulation of the derivative o-Abz-NHCH3 in SDS micelles by implicit solvent methods gave results comparable to the experimental ones, with relative deviations lower than 1\\%. It should be noted that further study should be carried out in order to have a better knowledge about the location of the probe in the micelle, and to afford a beter interpretation of the results.
|
9 |
Phenomenological Theory Of Superconductivity And Low-Energy Electronic Spectra In The High-Tc CupratesBanerjee, Sumilan 07 1900 (has links) (PDF)
Condensed matter physics is a rapidly evolving field of research enriched with the synthesis of new materials exhibiting a bewildering variety of phenomena and advances in experimental techniques. Over the years, discoveries and innovations in electronic systems have emphasized the crucial role played by correlations among electrons behind many of the observed unusual properties and have posed serious challenges to the physics community by exposing the lack of well-controlled theoretical methods to study the class of materials known as strongly correlated electronic systems. In these systems, known theoretical techniques typically fail to capture the essential features of the many-body ground state and finite temperature properties of the systems as typical electronic interaction energies are of order of or larger than the kinetic energies.
The study of strongly correlated electronic systems went through a revolution in the 1980s and 1990s after the discovery of superconductivity inorganic compounds, in heavy fermion systems and ultimately in copper oxides, referred to as cuprates, by Bednorz and Muller. In particular, the pursuit of understanding the mysterious origin of superconductivity in the cuprates and other associated strange phenomena has fascinated the condensed matter community over last two and half decades leading to most of the important unsolved, and probably interconnected, problems of quantum condensed matter physics such as the metal-insulator transition in low dimensions breakdown of Fermi liquid theory, the origin and behavior of unconventional superconductivity, quantum critical points, electronic in homogeneities and localization in interacting systems. This thesis is devoted to the study of some of the aspects of high-temperature superconductivity and associated phenomena in cuprates. In what follows, I give an overview of the organization of the thesis in to different chapters and their contents.
For setting up the stage, in Chapter 1, I give a brief account of some of the remarkable phenomena and properties observed in strongly correlated electronic matter and their salient features, that continue to draw much attention and excitement in current times. The peculiarity of the state of affairs in these systems is emphasized and motivated in the background of the paradigmatic Landau Fermi liquid theory and Hubbard model, the minimal model that is expected to capture the quintessence of electronic strong correlation.
In Chapter 2, starting with a brief historical account of the discovery of superconductivity in cuprates, the crystal structure of these materials, their chemical realities and basic electronic details are reviewed. This is followed by a survey of the phase diagram of cuprates, doped with, say, x number of holes per copper site, and a plethora of experimental findings that constitute the high-c puzzle. Characteristics of various observed phases, such as the superconducting, pseudo gap and strange metal phases, are discussed on the basis off acts accumulated through various experimental probes, e.g. nuclear magnetic resonance(NMR), neutron scattering, specific heat, transport and optical conductivity measurements as well as photo emission, tunnelling and Raman spectroscopies. As elucidated, these experiments point toward the need for an unconventional mechanism of superconductivity in cuprates and, more so, for the description of the rather abnormal high-temperature normal state that is realized above the superconducting transition temperature c. Keeping in mind the fact that there is no consensus even about the minimal microscopic electronic model, I review two models, namely the three band model and the t - J model; various approximate treatments of these models have dominated the theoretical developments in this field. A large number of theoretical pictures have been proposed based on different microscopic, semi-microscopic and phenomenological approaches in the past two decades for explaining the genesis of the observed strange phenomena in high-c cuprates. I include brief discussions on only a few of them while citing relevant references.
As mentioned above, a variety of approximate microscopic theories, based on both strong and weak coupling approaches, as well as numerical techniques have been tried to understand the cuprate phase diagram and capture the aspects of strong correlations in-built in Hubbard and t -J models. On the other hand, in conventional superconductors and, in general, for the study of phase transitions, phenomenological Ginzburg-Landau(GL) functionals written down from very general symmetry grounds have provided useful description for a variety of systems. Specially, Ginzburg-Landau theory has been proven to be complementary to the BCS theory for attacking a plethora of situations in superconductors, e.g., in homogeneities, structures of an isolated vortex and the vortex lattice etc. The GL functional has found wide applicability for the study of vortex matter in high-c superconductors as well. Inspired by the success of this type of phenomenological route, we propose and develop in Chapter 3 an approach, analogous in spirit to that of Ginzburg and Landau, for the superconducting and pseudogap phases of cuprates. We encompass a large number of well known phenomenologies of cuprate superconductivity in the form of a low-energy effective lattice functional of complex spin-singlet pair amplitudes with magnitude Δm and phase m, i.e. m =Δm exp(i m), that resides on the Cu-Cubonds(indexed by m)of the CuO2 planes of cuprates. The functional respects general symmetry requirements, e.g. the -wave symmetry of the superconducting order parameter as found in experiments. The assumptions and the specific physical picture behind such an approach as well as the key empirical inputs that go into it are discussed in this chapter. We calculate the superconducting transition temperature c and the average magnitude of the local pair amplitude, Δ= (Δm), using single-site mean-field theory for the model. We show that this approximation leads to general features of the doping-temperature(x - T )phase diagram in agreement with experiment. In particular, we find a phase coherent superconducting state with d-wave symmetry below a parabolic Tc (x) dome and a phase incoherent state with a perceptible local gap that persists up to a temperature around which can be thought of as a measure of the pseudogap temperature scale T* . Further, effects of thermal fluctuations beyond the mean-field level are captured via Monte Carlo(MC) simulations of the model for a finite two-dimensional (2D) lattice. We exhibit results for Tc obtained from MC simulations as well as that estimated in a cluster mean field approximation. Based on our picture we remark on contrasting scenarios proposed for the doping dependence of the pseudogap temperature.
Chapter 4 describes fluctuation phenomena related to pairing degrees of freedom and manifestations of these effects in various quantities of interest, e.g. superfluid density, specific heat etc., at finite temperature. Fluctuation effects have been studied in detail in superconductors over the years and pursued mainly using either the conventional GL functional or the BCS-framework at a microscopic level. However, the picture, in which the pseudogap phase is viewed as one consisting of bond-pairs with a d-wave symmetry correlation length growing as T approaches Tc, implies fluctuation phenomena of quite a different kind, as we discuss here. The contribution of the bond-pair degrees of freedom to thermal properties is obtained here from the lattice free-energy functional using MC simulation, as mentioned in the preceding paragraph. The results for the superfluid density or superfluid stiffness ps, a quantity measured e.g. via the penetration depth, are discussed. As shown, its doping and temperature dependence compare well with experimental results. In this chapter, I also report the calculation of the fluctuation specific heat Cv(T) and find that there are two peaks in its temperature dependence, a sharp one connected with Tc (ordering of the phase of m)and a relatively broad one(hump)connected to T* (rapid growth of the magnitude of Δm). The former is specially sensitive to the presence of a magnetic field, as we find in agreement with experiment. Vortices are relevant excitations in a superconductor and, in particular, in 2D orquasi-2D systems vortices influence the finite temperature properties in a major way. The results for the temperature dependence of vortex density obtained in the MC simulation of the GL-like model are also mentioned in Chapter 4. I report an estimate of the correlation length as well. These results might have relevance for the large Nernst signal observed over a broad temperature range above c in cuprates, as pointed out there.
Properties of an isolated vortex and collective effects arising due to interaction between vortices are of much significance for understanding mixed state of type-II superconductors and thus of cuprates. The superconducting order is destroyed in the core region around the centre of a vortex and the vortex core carries signatures of the normal state in a temperature regime where it is generally unattainable due to occurrence of superconductivity. As mentioned in Chapter 5, vortex properties(e.g. electronic excitation spectrum at the vortex core) in BCS superconductors have been explored theoretically, at a microscopic level through the Bogoliubov-deGennes(BdG) theory as well as using the Ginzburg-Landau functional. However, properties of vortices in cuprate superconductors have been found to be much more unusual than could possibly be captured by straightforward extensions of BCS theory to a -wave symmetry case. Chapter 5 briefly reviews the experimental findings on vortices in the superconducting state of cuprates, mainly as probed by Scanning Tunnelling Microscopy(STM) as well as from other probes such as NMR, neutron scattering, SR etc. I discuss some of the consequences of our GL-like functional regarding vortex properties, namely that of the vortex core and the region around it. We use our model to find Δm and m at different sites m for a 2π vortex whose core is at the midpoint of a square plaquette of Cu lattice sites. The vortex is found to change character from being primarily a phase or Josephson vortex for small x to a more BCS-like or Abrikosov vortex with a large diminution in the magnitude Δm as one approaches the vortex core, for large . Here I do not make any direct comparison with experimental data but discuss implications of our results in the background of existing experimental facts.
Unravelling the mysteries of high-Tc cuprates should necessarily involve the understanding of electronic excitations over a broad regime of doping and temperature encompassing the pseudo gap, superconducting and strange metal states. A phenomenological theory which aims to describe the pseudo gap phase as one consisting of preformed bond-pairs, is required to include both unpaired electrons and Cooper pairs of the same electrons coexisting and necessarily coupled with each other. In our Ginzburg Landau approach only the latter are explicit, while the former are integrated out. However, effects connected with the pair degrees of freedom are often investigated via their coupling to electrons, one very prominent examples being Angle Resolved Photoemmision Spectroscopy(ARPES),in which the momentum and energy spectrum of electrons ejected from the metal impinged by photons is investigated. In Chapter 6, we develop a unified theory of electronic excitations in the superconducting and pseudo gap phases using a model of electrons quantum mechanically coupled to spatially and temporally fluctuating Cooper pairs(the nearest neighbour singlet bond pairs). We discuss the theory and a number of its predictions which seem to be in good agreement with high resolution ARPES measurements, which have uncovered a number of unusual spectral properties of electrons near the Fermi energy with definite in-plane momenta. We show here that the spectral function of electrons with momentum ranging over the putative Fermi surface(recovered at high temperatures above the pseudogap temperature scale) is strongly affected by their coupling to Cooper pairs. On approaching Tc i.e. the temperature at which the Cooper pair phase stiffness becomes nonzero, the inevitable coupling of electrons with long-wavelength(d-wave symmetry) phase fluctuations leads to the observed characteristic low-energy behavior as reported in Chapter 6. Collective d-wave symmetry superconducting correlations develop among the pairs with a characteristic correlation length ξ which diverges on approaching the continuous transition temperature Tc from above. These correlations have a generic form for distances much larger than the lattice spacing. As we show here, the effect of these correlations on the electrons leads, for example, to a pseudogap in electronic density of states for T > T c persisting till T* , temperature-dependent Fermi arcs i.e. regions on the Fermi surface where the quasiparticle spectral density is non zero for a zero energy excitation and to the filling of the antinodal pseudogap in the manner observed. Further, the observed long-range order(LRO) below c leads to a sharp antinodal spectral feature related to the non zero superfluid density, and thermal pair fluctuations cause a deviation(‘bending’) of the inferred ‘gap’ as a function of k from the expected d-wave form (cos kxa - cos kya). The bending, being of thermal origin, decreases with decreasing temperature, in agreement with recent ARPES measurements.
I conclude in Chapter 7 by mentioning some natural directions in which the functional and the approach used here could be taken forward. The phenomenological theory proposed and developed in this thesis reconciles and ties together a range of cuprate superconductivity phenomena qualitatively and confronts them quantitatively with experiment. The results, and their agreement with a large body of experimental findings, strongly support the mechanism based on nearest neighbor Cooper pairs, and emergence of long-range -wave symmetry order as a collective effect arising from short range interaction between these pairs. This probably points to the way in which high-c superconductivity will be understood.
|
10 |
Influence du spectre électronique et de l'effet paramagnétique sur les propriétés des hétérostructures supraconductrices / Influence of electronic spectra and paramagnetic effect on the properties of superconducting heterostructuresMontiel, Xavier 09 December 2011 (has links)
Les hétérostructures de taille nanométrique comprenant des matériaux supraconducteurs (S) en contact avec des matériaux métalliques (N) ou ferromagnétiques (F) présentent des propriétés surprenantes. L'effet de proximité dans les structures F/S/F se manifeste par l'effet vanne de spin. Dans les jonctions S/F/S, on voit l'apparition d'une transition de phase 0-p. Ces propriétés dépendent des paramètres internes du ferromagnétiques. Dans la première partie, nous étudions l'influence d'un décalage énergétique et d'une différence de masse effective pour expliquer l'effet de vanne de spin inverse qui se manifeste dans certaines hétérostructures F/S/F. On étudie la transition de phase 0-p dans le cas de décalage énergétique et d'anisotropie des surfaces de Fermi.La seconde partie est consacré à l'étude de l'effet paramagnétique sur le diagramme (H,T) des bicouches S/N et S/S. On demontre qu'il se forme une phase de supraconductivité induite par champ magnétique à fort champ magnétique et faibles températures. Calculée en présence d'un phase supraconductrice inhomogène de type Fulde-Ferrell-Larkin-Ovchinikov (FFLO), on s'interesse également à l'influence des impuretés sur cette nouvelle phase supraconductrice à fort champ magnétique.La troisième partie est dévolue à l'étude des multicouches supraconducteur/métal normal(N). Le but de cette partie est d'étudier l'influence du nombre de couche et de décalage d'énergie sur la température critique, la densité d'état des multicouches S/N/.../N épaisses et de l'effet Josephson dans les multicouches S/N/.../N/S. / The atomic-scaled heterostructures with superconducting and ferromagnetic materials exhibit astonishing properties. For example, the proximity effect in the F/S/F sandwiches leads to the spin-valve effect. In the S/F/S junctions, one can observe 0-p phase transiton. These effects depend on the ferromagnetic properties.In the first part, we study the influence of energy shift and effective mass difference to explain the inverse spin valve effect. We also study the 0-p phase diagram and its dependence on the energy shifts and anisotropic sprectra in S/F/S junctions.The second part is devoted to the study of paramagnetic effet on the (H,T) phase diagram of the S/N and S/S bilayers. We demonstrate the formation of a superconducting field induced phase for high magnetic fields and low temperature. Calculated in presence of the superconducting inhomogeneous Fulde-Ferrell-Larkin-Ovchinikov (FFLO) state, we study the influence of the impurities on this new superconducting phase.The last part deals with the study of superconducting-normal metal(N) multilayers. We calculate the influence of the number of layers and energy shift on the density of state, the thermodynamical properties of the S/N/.../N thick multilayer and the Josephson current in the S/N/.../N/S thick junctions.
|
Page generated in 0.1002 seconds