• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 7
  • 1
  • Tagged with
  • 23
  • 23
  • 11
  • 10
  • 9
  • 9
  • 9
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Dynamique par transfert de spin et synchronisation d'oscillateurs couplés à base de vortex magnétiques

Locatelli, Nicolas 05 December 2012 (has links) (PDF)
Le sujet de cette thèse concerne la dynamique auto-entretenue excitée par transfert de spin de vortex couplés, dans des structures de type nano-piliers vannes de spin (Py/Cu/Py). Un premier objectif a été de comprendre les processus de transport polarisé en spin et de transfert de spin associés à des configurations d'aimantation fortement non-homogènes. Cette étude a permis d'identifier et ainsi de précisément contrôler les configurations magnétiques à base de vortex, et en particulier d'observer l'influence du transfert de spin sur les mécanismes de renversement du cœur de vortex. En combinant des calculs analytiques et des simulations micro-magnétiques, nous avons également pu déterminer les conditions sur les paramètres relatifs des deux vortex (chiralités et polarités) pour obtenir des oscillations gyrotropiques couplées auto-entretenues de deux vortex dans un pilier unique. Un cas très intéressant est prévu pour les piliers de plus grands diamètres (typiquement supérieurs à 200nm) pour lesquels le courant critique est réduit potentiellement à zéro. Les résultats expérimentaux confirment les prédictions sur l'existence d'une dynamique couplée de vortex, avec des largeurs de raies atteignant 200kHz, un record à champ nul (soit un facteur de qualité Q ≈ 5000, un ordre de grandeur plus grand que pour les auto-oscillations de vortex unique) et diminuant même jusqu'à 50kHz sous champ extérieur. Un second objectif de ce travail a été l'étude de la synchronisation de deux auto-oscillateurs à transfert de spin à base de vortex. Nous avons démontré que le verrouillage des phases par couplage dipolaire de deux oscillateurs identiques peut être théoriquement obtenu indépendamment des paramètres des deux vortex. Toutefois un couplage trois fois plus important est prévu dans le cas de vortex de polarités opposées. Du point de vue expérimental, des premiers résultats ont permis de démontrer une faculté de synchronisation de deux oscillateurs présentant un écart en fréquence atteignant jusqu'à 10% de leurs fréquences d'auto-oscillation. Ce travail de thèse, qui s'inscrit dans l'effort de recherche mené pour améliorer les performances rf des nano-oscillateurs à transfert de spin, a permis d'illustrer que l'excitation de modes d'aimantations couplées est une voie à poursuivre dans le but d'aboutir à des largeurs de raies de plus en plus faibles.
12

MAGNETORESISTANCE ET TRANSFERT DE SPIN DANS LES JONCTIONS TUNNEL MAGNETIQUES

Manchon, Aurélien 11 December 2007 (has links) (PDF)
L'observation du renversement d'aimantation induit par courant polarisé (CIMS) dans les jonctions tunnel magnétiques (JTM) a ouvert de nouvelles perspectives d'applications pour l'électronique de spin, en particulier à travers les mémoires magnétiques (MRAM). Cette réalisation exige une bonne maîtrise de l'oxydation de la barrière tunnel mais aussi une connaissance approfondie du phénomène de transfert dans ces dispositifs.<br />En premier lieu, une étude expérimentale de l'influence de l'oxygène sur les propriétés magnétiques d'une tricouche Pt/Co/MOx (MOx est un métal oxydé) est présentée. La modification d'anisotropie magnétique due aux atomes d'oxygène peut être utilisée pour contrôler l'oxydation des barrières tunnel. Le second aspect étudié est la détermination, théorique et expérimentale, des caractéristiques du transfert de spin dans les JTM. Ces caractéristiques sont d'abord discutées à travers un modèle d'électrons libres puis estimatées expérimentalement dans des JTM à travers la réalisation de diagrammes de phase statiques.
13

Pompage de spin et absorption de spin dans des hétérostructures magnétiques

Ghosh, Abhijit 12 November 2012 (has links) (PDF)
L'interaction entre électrons de conduction itinérants et électrons localisés dans les hétérostructures magnétiques est à l'origine d'effets tels que le transfert de moment de spin, le pompage de spin ou l'effet Hall de spin. Cette thèse est centrée sur le phénomène de pompage de spin : une couche ferromagnétique (FM) en précession injecte un courant de spin pur dans les couches adjacentes. Ce courant de spin peut être partiellement ou totalement absorbé par une couche, dite réservoir de spin, placée directement en contact avec le matériau ferromagnétique ou séparée par une couche d'espacement. L'absorption de la composante transverse du courant de spin induit une augmentation de l'amortissement de la précession ferromagnétique de la couche libre. Cet effet à été mesuré par des expériences de résonance ferromagnétique avec, pour la couche en précession FM, trois matériaux ferromagnétiques différents (NiFe, CoFeB et Co), et pour la couche de réservoir de spin, différents matériaux paramagnétiques (Pt, Pd, Ru), ferromagnétiques et antiferromagnétiques. Dans un premier temps, nous avons vérifié que le facteur d'amortissement non-local généré est de type amortissement de Gilbert, et qu'il est inversement proportionnel à l'épaisseur de la couche en précession FM. L'analyse de l'augmentation de l'amortissement a été réalisée dans le cadre du modèle de pompage de spin adiabatique proposé par Tserkovnyak et al.. Dans un second temps et suivant ce modèle, nous avons extrait les paramètres de conductance avec mélange de spin à l'interface g↑↓ pour différentes interfaces, ces paramètres déterminent le transport du courant de spin à travers des interfaces ferromagnétique/métal non-magnétique. Un troisième résultat important de cette thèse porte sur la longueur d'absorption du courant de spin dans des matériaux ferromagnétiques et paramagnétiques. Celle-ci varie considérablement d'un matériau à l'autre. Pour les matériaux ferromagnétiques, la longueur d'absorption du courant de spin est linéaire par rapport à l'épaisseur de la couche réservoir de spin, avec pour longueur caractéristique ~ 1 nm. Ce résultat est en cohérence avec les théories antérieures et avec les valeurs de longueur de déphasage de spin pour le transfert de moment de spin dans les matériaux ferromagnétiques. Dans les paramagnétiques tels que Pt, Pd, Ru, la longueur d'absorption est soit linéaire soit exponentielle selon que le réservoir paramagnétique est directement en contact avec la couche en précession ou bien séparé par une couche mince d'espacement en Cu. La longueur caractéristique correspondante est inférieure à la longueur de diffusion de spin. Des mesures complémentaires de dichroïsme circulaire magnétique par rayons X ont révélé une induction de moments magnétiques dans les matériaux paramagnétiques comme Pd, Pt, lorsque couplé directement ou indirectement avec une couche FM. Ce résultat fournit une explication de la dépendance en épaisseur linéaire observée dans les hétérostructures en contact direct. Etant donné que le pompage de spin et le couple de transfert de spin (STT) sont des processus réciproques, les résultats de cette thèse sur la conductance avec mélange de spin, la longueur d'absorption de spin et les moments de spin induits sont également d'un grand intérêt pour les études de transfert de moment de spin, ainsi que d'effet Hall de spin, direct et inverse. L'avantage des études présentées ici réside dans le fait qu'elles sont effectuées sur des couches minces continues, sans aucune étape de nanofabrication.
14

Formation de polarons magnétiques dans des boîtes quantiques de (Cd,Mn)Te insérées dans des nanofils de ZnTe / Magnetic polaron in (Cd,Mn)Te quantum dot inserted in ZnTe nanowire

Artioli, Alberto 17 June 2016 (has links)
Ce travail de thèse porte sur l’étude des propriétés optiques de boites quantiques anisotropes de (Cd,Mn)Te insérées dans des nanofils de ZnTe. Les boites quantiques étudiées contenant 10% de Mn sont allongées suivant l’axe du fil ce qui tend à favoriser un état fondamental à trou léger ayant une susceptibilité de spin perpendiculaire à l’axe du fil. L’objectif principal de la thèse est l’étude de la formation du Polaron Magnétique dans ces boites et la détermination de leur anisotropie magnétique.Nous avons étudié en premier les propriétés optiques de nanofils de ZnTe et de nanofils coeurs-coquilles ZnTe/(Zn,Mg)Te. Ces études nous ont amené à modéliser les contraintes élastiques dans le cœur, dans la coquille et dans des boites allongées insérées dans les nanofils. Ce modèle nous a permis d’estimer les splittings entre les niveaux de trou lourd et de trou léger dans la boite et dans le fil.Nous avons étudié ensuite des nanofils contenant des boites magnétiques et non magnétiques par spectroscopie magnéto-optique. Dans les boites magnétiques, les interactions d’exchange entre les porteurs localisés et les spins de Mn induisent un très fort décalage Zeeman de la raie excitonique (Effet Zeeman Géant). Pour extraire des paramètres quantitatifs, nous avons combiné différentes techniques expérimentales sur le même nanofil (photo et cathodoluminescence, analyse dispersive en énergie du rayonnement X). Nous avons utilisé différentes orientations du champ magnétique pour déterminer l’anisotropie du trou dans la boite. Les valeurs expérimentales sont plus petites que les valeurs théoriques ce qui suggère un mauvais confinement du trou dans la boite.Afin d’obtenir un meilleur confinement du trou, nous avons étudié des boites de (Cd,Mn)Te entourées d’une coquille de (Zn,Mg)Te. Grace au meilleur confinement du trou, nous avons réussi à observer la formation du Polaron Magnétique excitonique. Des mesures de photoluminescence résolues en temps sur des nanofils uniques nous ont permis d’extraire l’énergie et le temps de formation du Polaron Magnétique entre 5K et 50K. La raie d’émission des boites présente un effet Zeeman géant inhabituel caractéristique d’un Polaron Magnétique à trou léger. Nous avons développé un modèle théorique pour décrire la formation du Polaron Magnétique excitonique dans les boites quantiques. Ce model, basé sur l’énergie libre et valable pour des températures et des champs magnétiques arbitraires, a été utilisé pour rendre compte de l’ensemble des données expérimentales. Ce modèle a permis de déterminer les paramètres caractéristiques du polaron magnétique à trou léger (énergie, orientation and amplitude du moment magnétique, volume d’échange, anisotropie du trou). / In this PhD work we study the optical properties of anisotropic (Cd,Mn)Te magnetic quantum dots inserted in ZnTe nanowires. The quantum dots containing typically 10% of Mn spins are elongated along the nanowire axis which tend to stabilize a light hole ground state with a spin susceptibility perpendicular to the nanowire axis. The main goal was to study the formation of exciton Magnetic Polarons in such quantum dots and to determine their magnetic anisotropy.We investigate first the optical properties of ZnTe and ZnTe/(Zn,Mg)Te core shell nanowires. We model the elastic strain profile in core-shell nanowires and in elongated quantum dots. From the strain profiles, we estimate the value of the light hole heavy hole splitting expected in the dot and in the nanowire.In a second step we study single nanowires containing magnetic and non magnetic quantum dots by magneto-optical spectroscopy. The exchange interactions between confined carriers and Mn spins induce a large Zeeman shift of the exciton line (Giant Zeeman Effect). To extract quantitative parameters, we combine different experimental techniques (photo and cathodoluminescence, energy dispersive X ray spectroscopy) on the same nanowire. We use also different magnetic field orientations in order to determine the hole anisotropy in the dot. The experimental values are smaller than the theoretical ones suggesting a weak confinement of the holes in the dot due to a small (Cd,Mn)Te/ZnTe valence band offset.In a third step we study nanowires containing (Cd,Mn)Te quantum dots surrounded by a (Zn,Mg)Te alloy. Thanks to the better hole confinement induced by the (Zn,Mg)Te alloy, the formation of exciton magnetic polarons can be observed. We perform time resolved photoluminescence studies on single nanowires in order to determine the energy and the formation time of magnetic polarons from 5K to 50K. The quantum dot emission line shows an unusual Zeeman shift, characteristic of a light hole magnetic polaron. We develop a theoretical model describing the formation of exciton magnetic polaron in quantum dots. We use this model, based on the free energy and valid for any temperature and magnetic field, to fit the whole set of experimental data. It allows us to determine the characteristic parameters of the light hole magnetic polarons (energy, orientation and magnitude of the magnetic moment, exchange volume, hole anisotropy).
15

Pompage de spin et absorption de spin dans des hétérostructures magnétiques / Spin pumping and spin absorption in magnetic heterostructures

Ghosh, Abhijit 12 November 2012 (has links)
L'interaction entre électrons de conduction itinérants et électrons localisés dans les hétérostructures magnétiques est à l'origine d'effets tels que le transfert de moment de spin, le pompage de spin ou l'effet Hall de spin. Cette thèse est centrée sur le phénomène de pompage de spin : une couche ferromagnétique (FM) en précession injecte un courant de spin pur dans les couches adjacentes. Ce courant de spin peut être partiellement ou totalement absorbé par une couche, dite réservoir de spin, placée directement en contact avec le matériau ferromagnétique ou séparée par une couche d'espacement. L'absorption de la composante transverse du courant de spin induit une augmentation de l'amortissement de la précession ferromagnétique de la couche libre. Cet effet à été mesuré par des expériences de résonance ferromagnétique avec, pour la couche en précession FM, trois matériaux ferromagnétiques différents (NiFe, CoFeB et Co), et pour la couche de réservoir de spin, différents matériaux paramagnétiques (Pt, Pd, Ru), ferromagnétiques et antiferromagnétiques. Dans un premier temps, nous avons vérifié que le facteur d'amortissement non-local généré est de type amortissement de Gilbert, et qu'il est inversement proportionnel à l'épaisseur de la couche en précession FM. L'analyse de l'augmentation de l'amortissement a été réalisée dans le cadre du modèle de pompage de spin adiabatique proposé par Tserkovnyak et al.. Dans un second temps et suivant ce modèle, nous avons extrait les paramètres de conductance avec mélange de spin à l'interface g↑↓ pour différentes interfaces, ces paramètres déterminent le transport du courant de spin à travers des interfaces ferromagnétique/métal non-magnétique. Un troisième résultat important de cette thèse porte sur la longueur d'absorption du courant de spin dans des matériaux ferromagnétiques et paramagnétiques. Celle-ci varie considérablement d'un matériau à l'autre. Pour les matériaux ferromagnétiques, la longueur d'absorption du courant de spin est linéaire par rapport à l'épaisseur de la couche réservoir de spin, avec pour longueur caractéristique ~ 1 nm. Ce résultat est en cohérence avec les théories antérieures et avec les valeurs de longueur de déphasage de spin pour le transfert de moment de spin dans les matériaux ferromagnétiques. Dans les paramagnétiques tels que Pt, Pd, Ru, la longueur d'absorption est soit linéaire soit exponentielle selon que le réservoir paramagnétique est directement en contact avec la couche en précession ou bien séparé par une couche mince d'espacement en Cu. La longueur caractéristique correspondante est inférieure à la longueur de diffusion de spin. Des mesures complémentaires de dichroïsme circulaire magnétique par rayons X ont révélé une induction de moments magnétiques dans les matériaux paramagnétiques comme Pd, Pt, lorsque couplé directement ou indirectement avec une couche FM. Ce résultat fournit une explication de la dépendance en épaisseur linéaire observée dans les hétérostructures en contact direct. Etant donné que le pompage de spin et le couple de transfert de spin (STT) sont des processus réciproques, les résultats de cette thèse sur la conductance avec mélange de spin, la longueur d'absorption de spin et les moments de spin induits sont également d'un grand intérêt pour les études de transfert de moment de spin, ainsi que d'effet Hall de spin, direct et inverse. L'avantage des études présentées ici réside dans le fait qu‘elles sont effectuées sur des couches minces continues, sans aucune étape de nanofabrication. / In magnetic heterostructures, the interaction between itinerant conduction electrons with localized electrons is at the origin of effects such as the spin momentum transfer, spin pumping or the spin Hall effect. This thesis is centred on the phenomenon of spin pumping, which states that a precessing ferromagnetic (FM) layer injects a pure spin current into its adjacent metallic layers. This spin current can be partially or fully absorbed by a spin sink layer, placed directly in contact with the ferromagnet or separated by a spacer layer. The absorption of the transverse component of the spin current results in an enhancement of the effective damping of the precessing ferromagnet which we have studied using ferromagnetic resonance experiments for three different ferromagnets (NiFe, CoFeB and Co) as the precessing FM layer and various paramagnets (Pt, Pd, Ru), ferromagnets or an antiferromagnet as the spin sink layer. As a first step we have verified that the additional non-local damping is Gilbert type, and that it depends inversely on the thickness of the FM precessing layer. The analysis of the enhanced damping was done in the frame of an adiabatic spin pumping model proposed by Tserkovnyak et al. Within this model we extracted as a second step the interfacial spin mixing conductance parameters g↑↓ for various interfaces, which determine the spin current transport through FM/NM interfaces. A third important result of the thesis concerns the absorption length of spin currents in ferromagnets and paramagnets which we found can be very different. In ferromagnets the spin current absorption is linear with the spin sink layer thickness, with a characteristic length of ~1nm. This is consistent with theory and the spin dephasing length for spin momentum transfer in ferromagnets. In paramagnets such as Pt, Pd, Ru, the spin current absorption is either linear or exponential depending on whether the paramagnetic is directly in contact with the FM or separated by a thin Cu spacer layer. The corresponding characteristic length is less than the spin diffusion length. Complementary X-ray magnetic circular dichroism measurements revealed induced magnetic moments in paramagnets like Pd, Pt when directly or indirectly coupled with a FM layer. This provides an explanation for the linear thickness dependence for the direct contact heterostructures. Since spin pumping and spin transfer torque (STT) are reciprocal processes the results of this thesis on the spin mixing conductances, spin absorption length scales and induced moments will also be of great interest for studies on spin momentum transfer, Spin Hall effect and Inverse Spin Hall effect. The convenience being that these studies can be done on continuous films and no nanofabrication is required.
16

Parois magnétiques dans les nanofils cylindriques / Magnetic Domain Walls in Cylindrical Nanowires

Da Col, Sandrine 30 June 2014 (has links)
La richesse de la physique sous-jacente au déplacement de parois magnétiques suscite actuellement un fort intérêt, réhaussé par les possibilités d'applications dans les mémoires magnétiques.Les nanobandes fabriquées par lithographie constituent la quasi-totalité des systèmes dans lesquels les parois sont étudiées.Une géométrie cylindrique implique cependant des structures et dynamiques de parois qui se démarqueraient de celles observées dans les nanobandes et résoudraient notamment les limitations des vitesses de propagation observées.Leur procédé d'élaboration, fabrication d'une membrane nanoporeuse et remplissage électrolytique des pores, permet d'obtenir des fils auto-organisés en réseau, de grand rapport d'aspect et de faible distribution en diamètre.Malgré leur intérêt indéniable, peu d'études ont été consacrées aux parois dans ces systèmes cylindriques.Cette thèse se propose donc de contribuer au sujet.Une partie de cette thèse a été consacrée à la mise en place et au développement de certaines étapes du procédé de fabrication : réduction de la porosité des membranes, modulation du diamètre des pores, dépôt électrolytique d'un alliage magnétique.Ces ajustements de la géométrie et de la structure des fils ont permis d'étudier plusieurs aspects des parois dans les nanofils.Dans un premier temps, une méthode expérimentale a été proposée pour réduire les interactions magnétostatiques qui gêneraient la propagation des parois dans les réseaux denses de fils.Son efficacité a été démontrée sur le mécanisme de nucléation des parois qui intervient en bout de fil lors du renversement de l'aimantation, en mesurant les cycles d'hystérésis des réseaux de fils.D'autres mécanismes de piégeage ont ensuite été mis en évidence par l'analyse de courbes de première aimantation mesurées suite à la nucléation contrôlée de parois.Les champs de propagation de l'ordre de quelques milliteslas, mesurés par microscopie à force magnétique sur des fils individuels, ouvrent cependant la voie aux études dynamiques dans ces systèmes.Enfin, l'observation de la structure interne des parois par dichroïsme circulaire magnétique de rayons X en microscopie de photoémission d'électrons (PEEM-XMCD) a permis de mettre en évidence les deux types de parois prédits par la théorie et les simulations, pour lesquels des mobilités très différentes sont attendues. / The underlying physics of magnetic domain wall motion is currently arousing a strong interest, enhanced by the possibilities of applications into magnetic memories.Domain walls are mostly studied in nanostripes made by lithography.Nevertheless, a cylindrical geometry would involve domain walls with different structures and dynamical behaviors that could resolve issues, such as the speed limitation observed in nanostripes.Their elaboration process, via the fabrication of nanoporous template followed by the electrolytic filling of the pores, leads to self-organized nanowires with high aspect ratio and weak distribution in diameter.In spite of their undeniable interest, for now only very few domain walls studies have been conducted on such cylindrical systems.This thesis hence intends to contribute to the subject.Part of the thesis have been devoted to the setting and development of some steps of the fabrication process : reduction of membrane porosity, modulation of the pore diameter, electrodeposition of a magnetic alloy.These geometrical and structural adjustments of the nanowires have been used to study several facets of domain walls in nanowires.In the first place, an experimental way to reduce the magnetostatic interactions that could disturb domain wall propagation in dense arrays of nanowires have been proposed.Its efficency have been demonstrated through array hysteresis cycles, on the domain wall nucleation that occurs at nanowires extremities during magnetization reversal.Others pinning mechanisms have then been evidenced by analyzing initial magnetization curves measured after a controlled nucleation of domain walls.However, the observation of propagation fields of a few milliteslas by magnetic force microscopy (MFM) on individual nanowires opens the way to dynamical studies on such systems.At last, the observation of domain wall internal structure by X-ray magnetic circular dichroism in photoemission electron microscopy (XMCD-PEEM) evidenced the two types of domain walls theoretically and numerically predicted, for which very different mobilities are expected.
17

Mesure de propriétés magnétiques locales de dispositifs par microscopie électronique à transmission / Measurement of local magnetic properties of devices with transmission electron microscopy

Fu, Xiaoxiao 27 May 2016 (has links)
L'EMCD, Energy Loss Magnetic Chiral Dichroism, est une technique récente, mise en œuvre dans le microscope électronique à transmission (TEM), qui utilise la spectroscopie de pertes d'énergie d'électrons (EELS). Elle a pour objectif la mesure du moment magnétique local d'un élément chimique donné. Son utilisation contribue à progresser dans la compréhension des phénomènes magnétiques à l'échelle nanométrique. Cette thèse propose d'élargir les domaines d'applications de l'EMCD. Nous avons exploité l'EMCD pour l'étude de films minces de MnAs épitaxiés sur un substrat de GaAs(001). Ce travail montre l'utilité de cette technique dans le cas de structures hexagonales présentant une anisotropie magnéto-cristalline élevée. Le rapport des moments orbital et de spin du Mn dans les films de MnAs ferromagnétique de structure hexagonale a été mesuré par EMCD et comparé à des calculs DFT, ceci le long des axes magnétiques facile, difficile et intermédiaire. Une rupture de l'ordre ferromagnétique a par ailleurs été observée et mesurée in situ dans le microscope grâce à un porte-objet chauffant, lors de la transition cristallographique de a-MnAs hexagonal à ß-MnAs quasi-hexagonal. La technique EMCD a également été mise en œuvre pour sonder le moment 4f de composés de terres rares à base de dysprosium. Il s'agissait d'étudier des super-réseaux DyFe2/YFe2. Les règles de somme ont été établies pour le seuil M4,5 du Dy. En outre, le couplage antiparallèle des moments Dy et Fe a été confirmé en comparant leurs signaux dichroïques et en prenant en compte la théorie dynamique de la diffraction. Ce travail de thèse illustre pour la première fois d'une part la faisabilité de la technique EMCD pour l'étude quantitative de l'anisotropie et des transitions magnétiques, et d'autre part son potentiel pour étudier les terres rares et leur moment 4f, ainsi que le couplage avec des éléments de transition. / EMCD (Energy-Loss Magnetic Chiral Dichoism) is an emerging technique based on energy-loss spectroscopy (EELS) in a transmission electron microscopy (TEM). It aims at measuring the element-specific local magnetic moment of solids at a nanometer scale, and hence improving our understanding of magnetic local magnetic phenomena. This thesis presents the exploring work on developing the EMCD technique and its applications. We have applied EMCD to epitaxial MnAs thin films grown on a GaAs(001) substrate, extending the application of this technique to hexagonal structure with high magnetocrystalline anisotropy. The 3d orbital-to-spin moment ratio of Mn in hexagonal ferromagnetic MnAs along easy, hard and intermediate magnetic axes has been respectively estimated and then compared to DFT calculations. Moreover, a breaking of the ferromagnetic order in MnAs thin film, together with the crystallographic transition from hexagonal a-MnAs to quasi-hexagonal ß-MnAs, has been locally studied in-situ by modifying the temperature of the crystal inside the electron microscope. EMCD has also been settled to probe 4f moment in rare earth compounds, by investigating Dy-M4,5 edges in DyFe2/YFe2 superlattices. We have derived sum rules which are specified for 4f moment and applied them to the obtained dichroic signal over Dy-M4,5 edges. In addition, antiparallel coupling of Dy and Fe moments has been confirmed by comparing their dichroic signals, taking into account the dynamic diffraction effect. The work in this thesis illustrates for the first time the feasibility of EMCD technique for quantitative study of magnetocrystalline anisotropy and magnetic transition, and also proves its potential as a tool to investigate 4f moment as well as moment coupling in magnetic materials.
18

Dynamique par transfert de spin et synchronisation d’oscillateurs couplés à base de vortex magnétiques / Spin transfer induced dynamics and synchronization of magnetic vortex based coupled oscillators.

Locatelli, Nicolas 05 December 2012 (has links)
Le sujet de cette thèse concerne la dynamique auto-entretenue excitée par transfert de spin de vortex couplés, dans des structures de type nano-piliers vannes de spin (Py/Cu/Py). Un premier objectif a été de comprendre les processus de transport polarisé en spin et de transfert de spin associés à des configurations d’aimantation fortement non-homogènes. Cette étude a permis d‘identifier et ainsi de précisément contrôler les configurations magnétiques à base de vortex, et en particulier d’observer l’influence du transfert de spin sur les mécanismes de renversement du cœur de vortex. En combinant des calculs analytiques et des simulations micro-magnétiques, nous avons également pu déterminer les conditions sur les paramètres relatifs des deux vortex (chiralités et polarités) pour obtenir des oscillations gyrotropiques couplées auto-entretenues de deux vortex dans un pilier unique. Un cas très intéressant est prévu pour les piliers de plus grands diamètres (typiquement supérieurs à 200nm) pour lesquels le courant critique est réduit potentiellement à zéro. Les résultats expérimentaux confirment les prédictions sur l’existence d’une dynamique couplée de vortex, avec des largeurs de raies atteignant 200kHz, un record à champ nul (soit un facteur de qualité Q ≈ 5000, un ordre de grandeur plus grand que pour les auto-oscillations de vortex unique) et diminuant même jusqu’à 50kHz sous champ extérieur. Un second objectif de ce travail a été l’étude de la synchronisation de deux auto-oscillateurs à transfert de spin à base de vortex. Nous avons démontré que le verrouillage des phases par couplage dipolaire de deux oscillateurs identiques peut être théoriquement obtenu indépendamment des paramètres des deux vortex. Toutefois un couplage trois fois plus important est prévu dans le cas de vortex de polarités opposées. Du point de vue expérimental, des premiers résultats ont permis de démontrer une faculté de synchronisation de deux oscillateurs présentant un écart en fréquence atteignant jusqu'à 10% de leurs fréquences d'auto-oscillation. Ce travail de thèse, qui s’inscrit dans l’effort de recherche mené pour améliorer les performances rf des nano-oscillateurs à transfert de spin, a permis d’illustrer que l’excitation de modes d’aimantations couplées est une voie à poursuivre dans le but d’aboutir à des largeurs de raies de plus en plus faibles. / My PhD work is dedicated to the spin transfer induced self-sustained dynamics of two coupled vortices, in nano-pillars spin-valves structures (Py/Cu/Py). A first objective was to understand the spin-polarized transport processes as well as spin transfer mechanisms associated to highly non-homogeneous magnetic configurations. This study allows me to identify and then precisely tune the vortex based magnetic configurations, and notably to observe the influence of spin transfer on reversal mechanisms of the vortex core. Combining analytical calculations and micro-magnetic simulations, we determine the conditions on relative parameters for the two vortices (chiralities and polarities) necessary to obtain self-sustained gyrotropic oscillations of the coupled vortices in a single pillar. A very interesting case is predicted for the pillars with larger diameters (typically over 200nm) for which the critical current is reduced to zero. The experimental results confirm the predictions that a coupled dynamics exists with linewidths as narrow as 200kHz, that is a record at zero field (corresponding to a quality factor Q ≈ 5000, an order of magnitude over the self-sustained oscillations of a single vortex), and even down to 50kHz under external field.A second objective was to investigate the synchronization of two vortex based spin transfer oscillators. We demonstrate theoretically that the phase locking through dipolar coupling of two identical oscillators can be achieved for any parameters of the two vortex. However, the coupling is three times stronger when vortices have opposite core polarities. From an experimental point of view, the synchronization capability for two oscillators having a frequency mismatch reaching up to 10 % of the auto-oscillation frequency has been demonstrated. This work, being part of the research effort made to improve the rf properties of spin transfer nano-oscillators emphasizes how the excitation of coupled magnetizations modes is important to reach lower and lower linewidths.
19

Vers une électronique de spin cohérente de phase à base de nanotubes de carbone

Feuillet-Palma, Chéryl 28 May 2010 (has links) (PDF)
Cette thèse se place dans le cadre de la physique mésoscopique et a pour objet l'étude du transport électronique polarisé en spin dans les nanotubes de carbone mono-parois. L'existence d'un déséquilibre entre les populations d'électrons de spin up et ceux de spin down lors de leur diffusion à l'interface entre un métal ferromagnétique et un métal non- magnétique est au coeur du principe de fonctionnement des jonctions tunnel magnétiques et des multi-couches bien connues dans le domaine de l'électronique de spin. Bien que le degré de liberté de spin et l'effet tunnel des électrons soient utilisés dans ces dispositifs, aucun d'entre eux ne tient compte du degré de liberté de phase orbitale de la fonction d'onde électronique. Dans la plupart des dispositifs étudiés jusqu'à présent, cet aspect n'a pas été développé en raison du régime de transport semi-classique des porteurs de charge dans les conducteurs considérés. Dans ce travail, nous étudions des mesures de transport dépendantes du spin dans des circuits à plusieurs réservoirs à base de nanotubes de carbone. Nous observons la présence d'un signal de spin dans la tension non-locale et d'un signal de spin anormale dans la conductance. Ces signaux de spin sont contrôlables par le tension de grille appliquée et ils révèlent qu'à la fois le degré de liberté de phase orbitale et le degré de spin sont conservés dans un nanotube de carbone connecté à plusieurs réservoirs ferromagnétiques. Nous montrons également l'existence d'un phénomène étonnant qui n'a aucun analogue classique et qui est la conséquence de la cohérence de phase orbitale : la présence d'un comportement de type transistor de spin à effet de champ entre les deux contacts normaux avec à proximité deux contacts férromagnétiques en dehors du chemin classique des électrons. Ceci est la réalisation de l'expérience de tête de théoricien pour l'électronique de spin. Nos observations ouvrent la voix pour des dispositifs de l'électronique de spin exploitant ces deux degré de liberté quantique sur le même plan.
20

Dynamique du déplacement de parois magnétiques dans les couches ultra-minces à forte interaction spin-orbite / Domain wall motion dynamics in ultra-thin layers magnetic memory with strong spin-orbite interaction

Jué, Emilie 18 December 2013 (has links)
L'étude du déplacement des parois de domaines magnétiques au moyen d'un courant électrique, par couple de transfert de spin, a généré beaucoup d'intérêt ces dernières années, notamment depuis que de nouveaux dispositifs de mémoires magnétiques utilisant cet effet ont été proposés. Récemment, un nouveau mécanisme capable de propager les parois sous courant avec une grande efficacité a été mis en évidence dans les matériaux tri-couches à anisotropie perpendiculaire et à fort couplage spin-orbite. La compréhension de ce mécanisme, appelé couple de spin-orbite, reste néanmoins loin d'être acquise, tout comme son effet sur la propagation des parois de domaines.L'objectif de ce travail de thèse était d'étudier l'influence de ce couple de spin-orbite sur la dynamique des parois. Pour cela, j'ai étudié expérimentalement le déplacement de paroi sous l'action d'un courant et d'un champ magnétique dans une tri-couche de Pt/Co/AlOx en présence d'un champ magnétique planaire, utilisé pour modifier la structure interne de la paroi et ainsi moduler l'action du couple de spin-orbite sur la dynamique de celle-ci. Ce travail a permis de mettre en évidence l'existence d'un effet asymétrique dans la dynamique de la paroi pour ce type de système.Pour expliquer ce résultat, nous avons proposé une nouvelle structure de paroi dans les matériaux ultra-minces à anisotropie perpendiculaire, résultant de l'interaction Dzyaloshinskii-Moriya. En combinant des calculs analytiques et des simulations micro-magnétiques, la dynamique d'une telle paroi a été étudiée et comparée aux résultats expérimentaux. Enfin, toujours dans le but d'expliquer l'effet asymétrique observé expérimentalement, une seconde interprétation basée sur la présence d'un mécanisme d'amortissement anisotrope a également été proposée. / The study of current-induced magnetic domain wall motion through spin transfer torque has attracted a lot of attention in recent years, especially since new magnetic memories devices based on this effect have been proposed. Recently, a new mechanism allowing for highly efficient current-induced domain wall motion has been discovered in ultrathin asymmetric materials with perpendicular magnetic anisotropy and high spin-orbit coupling. However this mechanism, named spin-orbit torque, and its effect on domain wall motion are not yet well understood.The objective of this work was to study the influence of this spin-orbit torque on domain wall motion. For that, I have studied field- and current-induced domain wall motion in Pt/Co/AlOx trilayer, in the presence of an in-plane magnetic field. This work allowed highlighting the existence of an asymmetric effect in the domain-wall dynamics of this system.In order to explain this result, we have proposed a new kind of domain wall structure, resulting from Dzyaloshinskii-Moriya interaction in materials with perpendicular magnetic anisotropy and high spin-orbit coupling. Using analytic calculations and micro-magnetic simulations, this domain wall dynamics has been studied and compared to the experimental results. Finally, a second approach based on the presence of an anisotropic damping mechanism has also been proposed to explain the asymmetric effect observed experimentally.

Page generated in 0.1051 seconds