• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 564
  • 138
  • 120
  • 77
  • 41
  • 16
  • 14
  • 12
  • 10
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 1228
  • 197
  • 162
  • 155
  • 119
  • 99
  • 99
  • 99
  • 96
  • 83
  • 80
  • 78
  • 75
  • 73
  • 71
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
431

The Autonomic Nervous System in Cardiac Electrophysiology: An Elegant Interaction and Emerging Concepts

Kapa, Suraj, Venkatachalam, K. L., Asirvatham, Samuel J. 01 November 2010 (has links)
The autonomic nervous system plays an integral role in the modulation of normal cardiac electrophysiology. This is achieved via a complex network of pre- and postganglionic sympathetic and parasympathetic fibers that synapse on extrinsic and intrinsic cardiac ganglia and ultimately directly innervate cardiac myocytes. Alterations in autonomic tone may induce changes in local cellular electrophysiology that may manifest clinically in a number of ways, ranging from changes in heart rate to changes in heart rhythm. These relationships between autonomic tone and the evolution of cardiac dysrhythmias are areas of evolving research, with increasing evidence for a key role for autonomic ganglia in the pathogenesis of atrial fibrillation and sympathetic nerves in the predilection toward ventricular tachycardia in areas of myocardial scar. In this review, we highlight what is known about the anatomy and physiology of the cardiac autonomic nervous system, the evidence supporting the relationship of autonomic tone to clinically significant arrhythmias, and a variety of mechanisms (eg, direct ion channel effects) and diagnostic tools that exist to help define this relationship. Further emphasized are potential future avenues of research needed to elucidate the relationship between changes in normal autonomic tone and the pathogenesis of cardiac arrhythmias.
432

Phenotypic Properties of Adult Mouse Intrinsic Cardiac Neurons Maintained in Culture

Hoard, Jennifer L., Hoover, Donald B., Wondergem, Robert 01 December 2007 (has links)
Intrinsic cardiac neurons are core elements of a complex neural network that serves as an important integrative center for regulation of cardiac function. Although mouse models are used frequently in cardiovascular research, very little is known about mouse intrinsic cardiac neurons. Accordingly, we have dissociated neurons from adult mouse heart, maintained these cells in culture, and defined their basic phenotypic properties. Neurons in culture were primarily unipolar, and 89% had prominent neurite outgrowth after 3 days (longest neurite length of 258 ± 20 μm, n = 140). Many neurites formed close appositions with other neurons and nonneuronal cells. Neurite outgrowth was drastically reduced when neurons were kept in culture with a majority of nonneural cells eliminated. This finding suggests that nonneuronal cells release molecules that support neurite outgrowth. All neurons in coculture showed immunoreactivity for a full complement of cholinergic markers, but about 21% also stained for tyrosine hydroxylase, as observed previously in sections of intrinsic cardiac ganglia from mice and humans. Whole cell patch-clamp recordings demonstrated that these neurons have voltage-activated sodium current that is blocked by tetrodotoxin and that neurons exhibit phasic or accommodating patterns of action potential firing during a depolarizing current pulse. Several neurons exhibited a fast inward current mediated by nicotinic ACh receptors. Collectively, this work shows that neurons from adult mouse heart can be maintained in culture and exhibit appropriate phenotypic properties. Accordingly, these cultures provide a viable model for evaluating the physiology, pharmacology, and trophic factor sensitivity of adult mouse cardiac parasympathetic neurons.
433

Innervation and Neuronal Control of the Mammalian Sinoatrial Node a Comprehensive Atlas

Hanna, Peter, Dacey, Michael J., Brennan, Jaclyn, Moss, Alison, Robbins, Shaina, Achanta, Sirisha, Biscola, Natalia P., Swid, Mohammed A., Rajendran, Pradeep S., Mori, Shumpei, Hadaya, Joseph E., Smith, Elizabeth H., Peirce, Stanley G., Chen, Jin, Havton, Leif A., Cheng, Zixi, Vadigepalli, Rajanikanth, Schwaber, James 01 January 2021 (has links)
Rationale: Cardiac function is under exquisite intrinsic cardiac neural control. Neuroablative techniques to modulate control of cardiac function are currently being studied in patients, albeit with variable and sometimes deleterious results. Objective: Recognizing the major gaps in our understanding of cardiac neural control, we sought to evaluate neural regulation of impulse initiation in the sinoatrial node (SAN) as an initial discovery step. Methods and Results: We report an in-depth, multiscale structural and functional characterization of the innervation of the SAN by the right atrial ganglionated plexus (RAGP) in porcine and human hearts. Combining intersectional strategies, including tissue clearing, immunohistochemical, and ultrastructural techniques, we have delineated a comprehensive neuroanatomic atlas of the RAGP-SAN complex. The RAGP shows significant phenotypic diversity of neurons while maintaining predominant cholinergic innervation. Cellular and tissue-level electrophysiological mapping and ablation studies demonstrate interconnected ganglia with synaptic convergence within the RAGP to modulate SAN automaticity, atrioventricular conduction, and left ventricular contractility. Using this approach, we comprehensively demonstrate that intrinsic cardiac neurons influence the pacemaking site in the heart. Conclusions: This report provides an experimental demonstration of a discrete neuronal population controlling a specific geographic region of the heart (SAN) that can serve as a framework for further exploration of other parts of the intrinsic cardiac nervous system (ICNS) in mammalian hearts and for developing targeted therapies.
434

Neuroinflammatory conditions upregulate Piezo1 mechanosensitive ion channel in astrocytes

Jayasi, Jazmine 01 December 2021 (has links)
Neuroinflammation is prevalent in neurodegenerative diseases and plays a significant role in the central nervous system (CNS) innate immunity, which is the body’s first line of defense mechanisms against invading pathogens and injuries to maintain homeostasis. However, in neurodegenerative diseases, neuroinflammation becomes persistent alongside the subsequent damage to nearby neurons and affects CNS-resident immune glial cells, such as microglia and astrocytes. Accumulating evidence suggests that neuroinflammation is mainly characterized by the excessive activation of glial cells, thus causing abnormal changes in their microenvironment and release soluble factors that can promote or inhibit neuroinflammation. Currently, there is no effective treatment to cure these progressive neurological disorders. Therefore, it is critical to understand how neuroinflammation affects astroglia cell function and their biomechanical properties that change their behavior throughout disease progression. Astrocytes are the most predominant glial cell in the CNS and are critical in the development and maintenance of neuroinflammatory disorders. To date, very little is known regarding the role and specific function of Piezo1 mechanosensitive ion channel (MSC) in the CNS. Recently, Piezo1 expression was found to be upregulated in Lipopolysaccharide (LPS)-induced neuroinflammation in mouse astrocyte cultures. However, it is unknown whether the aberrant mechanical environment in astrocytes interplay with the mechanosensory function of Piezo1 and its current activity in neuroinflammatory conditions. In this study, we investigated Piezo1 mechanosensitive ionic currents by performing in vitro patch-clamp electrophysiology and calcium imaging. Our preliminary studies revealed that astrocytes derived from the mouse cerebellum stimulated with LPS or Piezo1 agonist, Yoda1, increased Ca2+ influx and further augmented when treated concurrently. We also found that electrophysiology recordings showed changes in mechanosensitive ionic currents and were comparable with our calcium imaging data indicating that MSCs are involved in neuroinflammation. Therefore, we postulated that Piezo1, a non-selective cation MSC that opens in response to mechanical force is a key mechanosensor involved in neuroinflammation by altered mechanical signals in C8-S astrocytes. Using an in vitro system of Mouse C8-S (Astrocyte type II clone), the goal of this study was to investigate if neuroinflammatory conditions upregulate Piezo1 calcium influx and current activity. We show that astrocytic Piezo1 regulates mechanotransducive release of ATP by controlling the mechanically induced calcium influx and current activation in LPS-induced astrocytes. Additionally, Piezo1 antagonist, GsMTx4 and Piezo1 siRNA significantly reduced the LPS-induced current, indicating that Piezo1 is involved in neuroinflammation. Our findings demonstrate that the activity of Piezo1 stimulated by neuroinflammatory conditions may be significant for the development of therapeutics to prevent or treat neuroinflammatory disorders and diseases.
435

Probing protein import machineries of different organisms with the lipid bilayer technique: Functional comparison and phylogenetic insights

Harsman, Anke 25 October 2012 (has links)
Im Rahmen dieser Arbeit wurde die Konservierung elektrophysiologischer Charakteristika von Proteintranslokasen aus verschiedenen Organismen untersucht. Die Sec61/Sec61p Komplexe aus rauen Mikrosomen von Canis familiaris und Saccharomyces cerevisiae bilden ionenpermeable Poren mit einer hohen Leitfähigkeit in planaren Lipidmembranen. In Säugerzellen werden diese durch einen Calcium-Calmodulin (Ca2+-CaM)-vermittelten negativen Feedback-Mechanismus reguliert. Im Rahmen dieser Arbeit konnte die Spezifität der zugrundeliegenden Interaktion von Ca2+-CaM mit der α-Untereinheit des Sec61 Komplexes belegt werden. Es wurde gezeigt, dass der Calmodulin Antagonist Ophiobolin A in der Lage ist, die Inhibition der Ionenpermeation durch Sec61 aufzuheben. Des Weiteren wurde anhand elektrophysiologischer Messungen nachgewiesen, dass dieser Ca2+-CaM-vermittelte Regulationsmechanismus in der Hefe S. cerevisiae nicht vorhanden ist. Dies wird auf eine kritische Variation in der Primärstruktur des Hefe-Proteins zurückgeführt, welche die Bindung von Calmodulin an den N-Terminus von Sec61p verhindert. Der bakterielle SecYEG Komplex aus E. coli konnte erfolgreich in Proteoliposomen rekonstituiert werden. Die Funktionalität des Translokons wurde in in vitro proOmpA Importexperimenten nachgewiesen. Mittels dieser Proteoliposomen sollten SecYEG Poren in den planaren Bilayer integriert werden. Sowohl für den inaktiven als auch für den durch die Anwesenheit von Substraten oder Bindepartnern aktivierten Komplex konnten keine ionenpermeablen Poren in der Membran nachgewiesen werden. Dies lässt darauf schließen, dass im Gegensatz zu den homologen Komplexen in Eukaryoten, der bakterielle Sec Komplex intrinsisch die Permeabilitätsbarriere für Ionen aufrechterhält. Die vorliegenden Ergebnisse legen nahe, dass weder die Ausbildung ionenpermeabler Poren, noch deren Regulation zwischen den Sec Komplexen von Bakterien, Hefen und Säugern vollständig konserviert ist. In einem zweiten Teilprojekt wurden auf der Suche nach der zentralen Proteinimportpore in der äußeren Mitochondrienmembran von Trypanosoma brucei zwei mögliche Kandidaten, TbSam50 und ATOM, anhand elektrophysiologischer Untersuchungen verglichen. Beide waren in der Lage in planaren Bilayern ionenpermeable Poren auszubilden. Die elektrophysiologischen Grundcharakteristika dieser Poren, wie der hohe Leitwert und die Selektivität für Kationen sowie die beobachtete Interaktion mit mitochondrialen Präsequenzen, stimmen gut mit einer potentiellen Funktion als Proteinimportpore überein. Eine detaillierte Untersuchung der Einzelkanaleigenschaften zeigte, dass TbSam50 beträcht-liche Ähnlichkeiten zu homologen Proteinen in Hefen und menschlichen Zellen aufweist. Somit bestätigen die hier präsentierten Ergebnisse die Identifikation von TbSam50 als Kern der trypanosomalen Assemblierungsmaschinerie für β-barrel Proteine in der äußeren Mitochondrienmembran. Besonderheiten in der Beeinflussung der Kanaleigenschaften durch mitochondriale Präpeptide, insbesondere die erhöhte Verweildauer des Kanals im geschlossenen Zustand, weisen darauf hin, dass TbSam50 keine duale Funktion als β-barrel Insertase und Proteintranslokase besitzt. Hingegen lieferte die elektrophysiologische Charakterisierung von ATOM Hinweise, welche die Identifikation dieses Proteins als porenbildende Untereinheit des mitochondrialen Proteinimportapparates in T. brucei bestätigen. Darüber hinaus zeigten Vergleiche der elektrophysiologischen Charakteristika, insbesondere des Schaltverhaltens und der Anzahl porenbildender Untereinheiten pro aktiver Einheit im artifiziellen Bilayer, dass ATOM stärkere Ähnlichkeiten zu Proteintranslokasen bakterieller Abstammung aufweist, als zu Tom40, der generellen Importpore der Eukaryoten. Dies unterstützt das auf Sequenzvergleichen basierende Model, dass ATOM ein evolutives Relikt repräsentiert, anhand dessen die Entwicklung der mitochondrialen Proteinimportmaschinerie aus einer bakteriellen, Omp85-artigen Protein-exportpore abgeleitet werden kann.
436

An investigation of the neural circuitry of cued alcohol behaviors in P and Wistar rats

McCane, Aqilah Maryam 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Alcohol-paired cues invigorate alcohol-seeking and drinking behaviors in both rodents and individuals with alcohol use disorder (AUD). Additionally, genetic susceptibility plays a key role in alcohol addiction behaviors. Alcohol preferring (P) rats model both genetic vulnerability and symptoms of AUD. The basolateral amygdala (BLA), prefrontal cortex (PFC), hippocampus (HC) and nucleus accumbens (NA) are important brain regions involved in cued alcohol seeking. These regions are interconnected and their functional connections are hypothesized to be critical in the expression of motivated behaviors. Electrophysiological recordings in these four regions were collected in P rats engaged in a cued alcohol task. Data were filtered in the theta band (5-11 Hz) and segregated by behavioral epoch. The phase locking index γ was computed and used to measure strength of phase locking between signals from any two brain regions. The cross correlation between the amplitude of two signals was used to determine directionality. PFC-NA synchrony increased after stimuli presentation and remained elevated, relative to baseline synchrony. PFC-NA synchrony was also stronger for trials in which the animal made three or more lever presses (rewarded; R), compared to trials in which the animal responded fewer than three times (not-rewarded; NR). During lever pressing, PFC-BLA, NA-HC and PFC-HC synchrony was stronger after presentation of the DS+, in R compared to NR trials. NA-HC and PFC-BLA synchrony was stronger when responses were withheld in extinction, relative to conditioning. These data inform our knowledge of how corticolimbic connections are involved in cued ethanol seeking behaviors.
437

Epilepsy Mutations in Different Regions of the Nav1.2 Channel Cause Distinct Biophysical Effects

Mason, Emily R. 06 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / While most cases of epilepsy respond well to common antiepileptic drugs, many genetically-driven epilepsies are refractory to conventional antiepileptic drugs. Over 250 mutations in the Nav1.2 gene (SCN2A) have been implicated in otherwise idiopathic cases of epilepsy, many of which are refractory to traditional antiepileptic drugs. Few of these mutations have been studied in vitro to determine their biophysical effects on the channels, which could reveal why the effects of some are refractory to traditional antiepileptic drugs. The goal of this dissertation was to characterize multiple epilepsy mutations in the SCN2A gene, which I hypothesized would have distinct biophysical effects on the channel’s function. I used patch-clamp electrophysiology to determine the biophysical effects of three SCN2A epilepsy mutations (R1882Q, R853Q, and L835F). Wild-type (WT) or mutant human SCN2A cDNAs were expressed in human embryonic kidney (HEK) cells and subjected to a panel of electrophysiological assays. I predicted that the net effect of each of these mutations was enhancement of channel function; my results regarding the L835F and R1882Q mutations supported this hypothesis. Both mutations enhance persistent current, and R1882Q also impairs fast inactivation. However, examination of the same parameters for the R853Q mutation suggested a decrease of channel function. I hypothesized that the R853Q mutation creates a gating pore in the channel structure through which sodium leaks into the cell when the channel is in its resting conformation. This hypothesis was supported by electrophysiological data from Xenopus oocytes, which showed a significant voltage-dependent leak current at negative potentials when they expressed the R853Q mutant channels. This was absent in oocytes expressing WT channels. Overall, these results suggest that individual mutations in the SCN2A gene generate epilepsy via distinct biophysical effects that may require novel and/or tailored pharmacotherapies for effective management.
438

CaMKII Phosphorylation of the Voltage-Gated Sodium Channel Nav1.6 Regulates Channel Function and Neuronal Excitability

Zybura, Agnes Sara 01 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Voltage-gated sodium channels (Navs) undergo remarkably complex modes of modulation to fine tune membrane excitability and neuronal firing properties. In neurons, the isoform Nav1.6 is highly enriched at the axon initial segment and nodes, making it critical for the initiation and propagation of neuronal impulses. Thus, Nav1.6 modulation and dysfunction may profoundly impact the input-output properties of neurons in normal and pathological conditions. Phosphorylation is a powerful and reversible mechanism that exquisitely modulates ion channels. To this end, the multifunctional calcium/calmodulin-dependent protein kinase II (CaMKII) can transduce neuronal activity through phosphorylation of diverse substrates to serve as a master regulator of neuronal function. Because Nav1.6 and CaMKII are independently linked to excitability disorders, I sought to investigate modulation of Nav1.6 function by CaMKII signaling to reveal an important mechanism underlying neuronal excitability. Multiple biochemical approaches show Nav1.6 is a novel substrate for CaMKII and reveal multi-site phosphorylation within the L1 domain; a hotspot for post-translational regulation in other Nav isoforms. Consistent with these findings, pharmacological inhibition of CaMKII reduces transient and persistent sodium currents in Purkinje neurons. Because Nav1.6 is the predominant sodium current observed in Purkinje neurons, these data suggest that Nav1.6 may be modulated through CaMKII signaling. In support of this, my studies demonstrate that CaMKII inhibition significantly attenuates Nav1.6 transient and persistent sodium currents and shifts the voltage-dependence of activation to more depolarizing potentials in heterologous cells. Interestingly, I show that these functional effects are likely mediated by CaMKII phosphorylation of Nav1.6 at S561 and T642, and that each phosphorylation site regulates distinct biophysical characteristics of the channel. These findings are further extended to investigate CaMKII modulation of disease-linked mutant Nav1.6 channels. I show that different Nav1.6 mutants display distinct responses to CaMKII modulation and reveal that acute CaMKII inhibition attenuates gain-of-function effects produced by mutant channels. Importantly, computational simulations modeling the effects of CaMKII inhibition on WT and mutant Nav1.6 channels demonstrate dramatic reductions in neuronal excitability in Purkinje and cortical pyramidal cell models. Together, these findings suggest that CaMKII modulation of Nav1.6 may be a powerful mechanism to regulate physiological and pathological neuronal excitability. / 2022-02-02
439

Electrophysiology of Optic Nerves in Methylglyoxal Treated Mice

Vaughan, Parker Andrew 07 June 2020 (has links)
No description available.
440

Electrical properties of cardiac sarcoplasmic reticulum membrane vesicles

Farmen, Raymond H. January 1980 (has links)
This document only includes an excerpt of the corresponding thesis or dissertation. To request a digital scan of the full text, please contact the Ruth Lilly Medical Library's Interlibrary Loan Department (rlmlill@iu.edu).

Page generated in 0.0547 seconds