• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 136
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 191
  • 191
  • 176
  • 171
  • 81
  • 48
  • 39
  • 38
  • 27
  • 24
  • 24
  • 24
  • 23
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Identification of “Known Unknowns” Utilizing Accurate Mass Data and Chemical Abstracts Service Databases

Little, James L., Cleven, Curtis D., Brown, Stacy D. 01 February 2011 (has links)
No description available.
132

CROSS PHOTOREACTION OF PYRUVIC AND GLYOXYLIC ACIDS IN MODEL AQUEOUS AEROSOLS

Xia, Shasha 01 January 2014 (has links)
Aerosols affect climate change, the energy balance of the atmosphere, and public health due to their variable chemical composition, size, and shape. Aerosols from natural and anthropogenic sources can be primary organic aerosols (POA), which are directly emitted to the atmosphere, or secondary organic aerosols (SOA) that are formed from chemical reactions of gas-phase precursors. At variance with the well investigated formation of SOA from gas phase precursors, the chemistry of aqueous SOAs that contribute to the total SOA budget remains unknown. Field measurements have revealed that carboxylic, dicarboxylic and oxocarboxylic acids are abundant species present in SOAs. This thesis explores the fate of two such acids, pyruvic (PA) and glyoxylic (GA) acids surrogates of the oxocarboxylic acids in the atmosphere, in their cross reaction under solar irradiation and dark thermal aging. Mixtures of complex photoproducts are identified by ion chromatography (IC) with conductivity and electrospray (ESI) mass spectrometry (MS) detection, direct ESI-MS analysis in the negative ion mode, and nuclear magnetic resonance spectroscopy (NMR) analysis including one-dimensional (1H- and 13C-NMR) and two-dimensional techniques such as gradient correlation spectroscopy (gCOSY) and heteronuclear single quantum correlation (HSQC). A reaction mechanism for the cross reaction is provided based on all experimental observations.
133

Electrifying the Molecules of Life : Peptide and Protein Analysis by Capillary Electrophoresis Coupled to Electrospray Ionization Mass Spectrometry

Wetterhall, Magnus January 2004 (has links)
<p>This thesis describes the current status and novel aspects of the analysis of the molecules of life, i.e. peptides and proteins, using capillary electrophoresis (CE) coupled to mass spectrometry (MS) via (sheathless) electrospray ionization (ESI). Early reports of sheathless CE-ESI-MS were plagued by limited lifetimes of the electrospray emitter. In this thesis, two new approaches, the Black Dust and the Black Jack methods, utilizing polymer-embedded graphite instead of noble metals are presented. These emitters have shown improved long-term stability and proven excellent for sheathless electrospray operation. Failure of an emitter is often caused by electrochemical reactions occurring at the emitter-liquid interface. The electrochemical properties of the graphite coated emitters were therefore evaluated by classical electrochemical methods, such as cyclic voltammetry and chronoamperometry. The graphite coated emitters showed excellent electrochemical stability and properties compared to noble metal and polymer configurations.</p><p>Analyte-wall interactions have long been known to cause problems in the CE analysis of biomolecules. This can be circumvented by internal modification of the capillary walls. Additionally, it is of outermost importance to have a stable and sufficiently high electroosmotic flow (EOF) to sustain the electrospray, when using a sheathless approach. New monomer and polymer coatings are presented for rapid and high-efficient CE-ESI-MS separations of peptides and proteins.</p><p>Furthermore, the use of CE-ESI coupled to Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) shows great potential for rapid proteomic probing of human cerebrospinal fluid. The results are comparable with more established techniques, such as liquid chromatography and two-dimensional gel electrophoresis coupled to MS. However, the CE-ESI-FTICRMS analysis has significantly lower sample consumption and faster analysis time compared to the other techniques. The applications and use of CE-ESI-MS is expected to have a bright future with continued growth as current trends of multidimensional hyphenation and microfabricated devices are further developed and explored.</p>
134

Development and Investigations of Novel Sample Preparation Techniques : Electrochemical Extraction and Evaluation of Miniaturized Analytical Devices Coupled to Mass Spectrometry

Liljegren, Gustav January 2005 (has links)
<p>Different sample preparation steps prior to a detection method are often essential in analytical chemistry. In this thesis, both static extractions and on-line coupled solid-phase extractions have been studied in combination with different detection techniques. Aspects of performing sample preparations in miniaturized analytical devices and the development of poly(dimethylsiloxane) (PDMS) microchips are discussed. Polypyrrole was also evaluated as an electrochemically controllable stationary phase for solid-phase microextraction (SPME) and solid-phase extraction (SPE).</p><p>The first part of this thesis describes the extraction of an organic compound from a very complex solid matrix utilizing the pressurized-fluid extraction (PFE) technique. The presented results show that PFE is easily optimized and enables rapid extractions and extracts relatively free from interferences.</p><p>An integrated three-electrode device, which enabled electrochemical (EC) SPME under potential control, was developed. With this device, both anions and cations could be extracted employing two types of polypyrrole films. Planar micro band electrodes positioned at the end of a capillary were also used to electrochemically extract and detect anions in a miniaturized flow system. Different analyte concentrations and preconcentration times were examined, and good linear correlations were found between the extraction time and the detection response. The on-line coupling of a thin layer EC cell, with a polypyrrole coated working electrode, to different mass spectrometric (MS) techniques is also described and evaluated. The results show that EC-SPE, employing polypyrrole as stationary phase, can be used as a preconcentration step prior to detection.</p><p>In addition, this thesis describes the development and on-line coupling of a microelectrode array equipped PDMS microchip with an integrated graphite electrospray emitter to electrospray ionization (ESI) MS. The system enabled short transfer times and an EC conversion efficiency of 30% at a flow rate of 0.5 μL/min. The on-line EC/ESI-MS experiments were significantly simplified using a wireless Bluetooth battery-powered EC instrument.</p>
135

Development of Enhanced Analytical Methodology for Lipid Analysis from Sampling to Detection : A Targeted Lipidomics Approach

Isaac, Giorgis January 2005 (has links)
<p>This thesis covers a wide range of analytical method development for lipid analysis in complex biological samples; from sample preparation using pressurized fluid extraction (PFE) and separation with reversed phase capillary liquid chromatography (RP-LC) to detection by electrospray ionization mass spectrometry (ESI/MS) and tandem MS.</p><p>The requirements for fast, reliable and selective extraction methods with minimal usage of solvents have accelerated the development of new extraction techniques. PFE is one of the new automated, fast and efficient liquid extraction techniques which use elevated temperature and pressure with standard liquid solvents. In this thesis the reliability and efficiency of the PFE technique was investigated for the extraction of total lipid content from cod, herring muscle and human brain tissue as well as for pesticides from fatty foodstuffs. Improved or comparable efficiencies were achieved with reduced time and solvent consumption as compared to traditional methods. </p><p>A RP-LC coupled online to ESI/MS for the analysis of phosphatidylcholine (PC) and sphingomyelin (SM) molecular species was developed and used for the analysis of brain lipids from eight groups of mice treated with vehicle and various neuroleptics. The effect of postnatal iron administration in lipid composition and behavior was investigated. Whether or not these effects could be altered by subchronic administration of the neuroleptics (clozapine and haloperidol) were examined. The results support the hypothesis that an association between psychiatric disorders, behavior abnormalities and lipid membrane constitution in the brain exists.</p><p>Finally, a tandem MS precursor ion scan was used to analyze the developmental profile of brain sulfatide accumulation in arylsulfatase A (ASA) deficient (ASA -/-) as compared to wild type control (ASA +/+) mice. The ASA -/- mice were developed as a model of the monogenic disease metachromatic leukodystrophy with an established deficiency of the lysosomal enzyme ASA. The results showed that an alteration in the composition of sulfatide molecular species was observed between the ASA -/- and ASA +/+ mice.</p><p>This thesis shows that modern analytical methods can provide new insights in the extraction and analysis of lipids from complex biological samples.</p>
136

From Solution into Vacuum - Structural Transitions in Proteins

Patriksson, Alexandra January 2007 (has links)
<p>Information about protein structures is important in many areas of life sciences, including structure-based drug design. Gas phase methods, like electrospray ionization and mass spectrometry are powerful tools for the analysis of molecular interactions and conformational changes which complement existing solution phase methods. Novel techniques such as single particle imaging with X-ray free electron lasers are emerging as well. A requirement for using gas phase methods is that we understand what happens to proteins when injected into vacuum, and what is the relationship between the vacuum structure and the solution structure.</p><p>Molecular dynamics simulations in combination with experiments show that protein structures in the gas phase can be similar to solution structures, and that hydrogen bonding networks and secondary structure elements can be retained. Structural changes near the surface of the protein happen quickly (ns-µs) during transition from solution into vacuum. The native solution structure results in a reasonably well defined gas phase structure, which has high structural similarity to the solution structure. </p><p>Native charge locations are in some cases also preserved, and structural changes, due to point mutations in solution, can also be observed in vacuo. Proteins do not refold in vacuo: when a denatured protein is injected into vacuum, the resulting gas phase structure is different from the native structure.</p><p>Native structures can be protected in the gas phase by adjusting electrospray conditions to avoid complete evaporation of water. A water layer with a thickness of less than two water molecules seems enough to preserve native conditions.</p><p>The results presented in this thesis give confidence in the continued use of gas phase methods for analysis of charge locations, conformational changes and non-covalent interactions, and provide a means to relate gas phase structures and solution structures.</p>
137

Electrifying the Molecules of Life : Peptide and Protein Analysis by Capillary Electrophoresis Coupled to Electrospray Ionization Mass Spectrometry

Wetterhall, Magnus January 2004 (has links)
This thesis describes the current status and novel aspects of the analysis of the molecules of life, i.e. peptides and proteins, using capillary electrophoresis (CE) coupled to mass spectrometry (MS) via (sheathless) electrospray ionization (ESI). Early reports of sheathless CE-ESI-MS were plagued by limited lifetimes of the electrospray emitter. In this thesis, two new approaches, the Black Dust and the Black Jack methods, utilizing polymer-embedded graphite instead of noble metals are presented. These emitters have shown improved long-term stability and proven excellent for sheathless electrospray operation. Failure of an emitter is often caused by electrochemical reactions occurring at the emitter-liquid interface. The electrochemical properties of the graphite coated emitters were therefore evaluated by classical electrochemical methods, such as cyclic voltammetry and chronoamperometry. The graphite coated emitters showed excellent electrochemical stability and properties compared to noble metal and polymer configurations. Analyte-wall interactions have long been known to cause problems in the CE analysis of biomolecules. This can be circumvented by internal modification of the capillary walls. Additionally, it is of outermost importance to have a stable and sufficiently high electroosmotic flow (EOF) to sustain the electrospray, when using a sheathless approach. New monomer and polymer coatings are presented for rapid and high-efficient CE-ESI-MS separations of peptides and proteins. Furthermore, the use of CE-ESI coupled to Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) shows great potential for rapid proteomic probing of human cerebrospinal fluid. The results are comparable with more established techniques, such as liquid chromatography and two-dimensional gel electrophoresis coupled to MS. However, the CE-ESI-FTICRMS analysis has significantly lower sample consumption and faster analysis time compared to the other techniques. The applications and use of CE-ESI-MS is expected to have a bright future with continued growth as current trends of multidimensional hyphenation and microfabricated devices are further developed and explored.
138

Development and Investigations of Novel Sample Preparation Techniques : Electrochemical Extraction and Evaluation of Miniaturized Analytical Devices Coupled to Mass Spectrometry

Liljegren, Gustav January 2005 (has links)
Different sample preparation steps prior to a detection method are often essential in analytical chemistry. In this thesis, both static extractions and on-line coupled solid-phase extractions have been studied in combination with different detection techniques. Aspects of performing sample preparations in miniaturized analytical devices and the development of poly(dimethylsiloxane) (PDMS) microchips are discussed. Polypyrrole was also evaluated as an electrochemically controllable stationary phase for solid-phase microextraction (SPME) and solid-phase extraction (SPE). The first part of this thesis describes the extraction of an organic compound from a very complex solid matrix utilizing the pressurized-fluid extraction (PFE) technique. The presented results show that PFE is easily optimized and enables rapid extractions and extracts relatively free from interferences. An integrated three-electrode device, which enabled electrochemical (EC) SPME under potential control, was developed. With this device, both anions and cations could be extracted employing two types of polypyrrole films. Planar micro band electrodes positioned at the end of a capillary were also used to electrochemically extract and detect anions in a miniaturized flow system. Different analyte concentrations and preconcentration times were examined, and good linear correlations were found between the extraction time and the detection response. The on-line coupling of a thin layer EC cell, with a polypyrrole coated working electrode, to different mass spectrometric (MS) techniques is also described and evaluated. The results show that EC-SPE, employing polypyrrole as stationary phase, can be used as a preconcentration step prior to detection. In addition, this thesis describes the development and on-line coupling of a microelectrode array equipped PDMS microchip with an integrated graphite electrospray emitter to electrospray ionization (ESI) MS. The system enabled short transfer times and an EC conversion efficiency of 30% at a flow rate of 0.5 μL/min. The on-line EC/ESI-MS experiments were significantly simplified using a wireless Bluetooth battery-powered EC instrument.
139

Development of Enhanced Analytical Methodology for Lipid Analysis from Sampling to Detection : A Targeted Lipidomics Approach

Isaac, Giorgis January 2005 (has links)
This thesis covers a wide range of analytical method development for lipid analysis in complex biological samples; from sample preparation using pressurized fluid extraction (PFE) and separation with reversed phase capillary liquid chromatography (RP-LC) to detection by electrospray ionization mass spectrometry (ESI/MS) and tandem MS. The requirements for fast, reliable and selective extraction methods with minimal usage of solvents have accelerated the development of new extraction techniques. PFE is one of the new automated, fast and efficient liquid extraction techniques which use elevated temperature and pressure with standard liquid solvents. In this thesis the reliability and efficiency of the PFE technique was investigated for the extraction of total lipid content from cod, herring muscle and human brain tissue as well as for pesticides from fatty foodstuffs. Improved or comparable efficiencies were achieved with reduced time and solvent consumption as compared to traditional methods. A RP-LC coupled online to ESI/MS for the analysis of phosphatidylcholine (PC) and sphingomyelin (SM) molecular species was developed and used for the analysis of brain lipids from eight groups of mice treated with vehicle and various neuroleptics. The effect of postnatal iron administration in lipid composition and behavior was investigated. Whether or not these effects could be altered by subchronic administration of the neuroleptics (clozapine and haloperidol) were examined. The results support the hypothesis that an association between psychiatric disorders, behavior abnormalities and lipid membrane constitution in the brain exists. Finally, a tandem MS precursor ion scan was used to analyze the developmental profile of brain sulfatide accumulation in arylsulfatase A (ASA) deficient (ASA -/-) as compared to wild type control (ASA +/+) mice. The ASA -/- mice were developed as a model of the monogenic disease metachromatic leukodystrophy with an established deficiency of the lysosomal enzyme ASA. The results showed that an alteration in the composition of sulfatide molecular species was observed between the ASA -/- and ASA +/+ mice. This thesis shows that modern analytical methods can provide new insights in the extraction and analysis of lipids from complex biological samples.
140

Metabolic Studies with Liquid Separation Coupled to Mass Spectrometry

Allard, Erik January 2009 (has links)
Metabolism is the sum of all chemical processes with the purpose to maintain life, as well as enable reproduction, in a living organism. Through the study of metabolism, increased understanding of pharmacological mechanisms and diseases can be achieved. This thesis describes several ways of doing so, including targeted analysis of selected metabolites and investigations of systematic metabolic differences between selected groups through pattern recognition. A method for exploring metabolic patterns in urine samples after intake of coffee or tea was developed. The methodology was later used with the aim to find biomarkers for prostate cancer and urinary bladder cancer. Furthermore, a fully automated quantitative method was developed for concentration measurements of the double prodrug ximelagatran and its metabolites in pig liver. The method was then used to study the roll of active transporters in pig liver cells. Moreover, a fundamental study was conducted to investigate how monitoring of small, doubly charged analytes can improve the limit of detection and precision in a quantitative method. The techniques used for the experiments were liquid separation coupled to electrospray mass spectrometry. Extra efforts were made to make the separation and the ionization as compatible as possible to each other for increased quality of the collected data.

Page generated in 0.1006 seconds