• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 4
  • 3
  • Tagged with
  • 49
  • 15
  • 15
  • 14
  • 10
  • 7
  • 7
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DEVELOPMENT OF A NOVEL MATRIX ASSISTED LASER DESORPTION / IONIZATION (MALDI) BASED PEPTIDE QUANTITATION APPROACH

Priyasantha, Kandalama KD 01 May 2015 (has links)
Matrix Assisted Laser Desorption / Ionization (MALDI) Mass Spectrometry (MS) has emerged as an important tool in the field of proteomics mainly because it is simple, quick and efficient. The identification and quantitation of biomarkers, protein targets for drugs, and metabolites are some of the important fields in proteomics research. Although MALDI MS is an important tool in proteomics research there are drawbacks of the technique that need further development in order for the approach to be used in clinical laboratories. One major limitation of MALDI MS is the generally poor reproducibility of ion signal intensities, which negatively impacts the quantitation of peptides and protein by MALDI MS. A considerable amount of research has been performed in an effort to improve the ion signal reproducibility in MALDI MS. However, many of the approaches developed have introduced specific drawbacks with respect to the traditional dried-droplet sample preparation technique, negating many of the advantages of the MALDI MS approach. This project has focused on the development of a novel approach to quantify peptides by MALDI MS while preserving traditional known advantages of the technique. The studies performed show that an approach in which the ion signal base widths are manipulated to match that of a reference ion signal, through adjustments in desorption laser intensity, leads to much higher reproducibility in the integrated ion signal intensities. A standard curve acquired using the constant ion signal base width approach showed lower average RSDs (< 10.00% vs.> 39.00%) and improved R2 values (> 0.9600 vs. < 0.809) as compared to the conventional constant desorption laser intensity approach. Subsequent work also revealed that the peptide hydrophobic / hydrophilic properties influenced the applicability of the quantitation approach to mixtures of peptides. Specifically, the data revealed that peptides with differing hydrophobic / hydrophilic properties appear to co-crystallize with the MALDI matrix differently leading to an inability to use a hydrophobic peptide signal to quantitate a hydrophilic peptide, and vice versa. This latter conclusion was further supported in similar studies performed on the mixture of peptides resulting from tryptic digestion of the protein bovine serum albumin.
2

Mass Spectrometric Analysis of Neurologically-Relevant Molecules

Smith, Catherine L., Smith, Catherine L. January 2018 (has links)
The analysis and quantitation of neurologically-relevant molecules requires detection methods that are sensitive, selective, and applicable to a wide range of molecules. Targeted analysis using tandem mass spectrometry allows for the detection of molecules from complex matrices with an added level of selectivity. Mass spectrometry is on the leading edge of technological advances and improvements in our understanding of the intricate workings of the brain, allowing us to develop better models and better therapeutic approaches. In this thesis, I use tandem mass spectrometry to investigate two classes of neurochemicals: classical neurotransmitters, and potential therapeutic drugs based on endogenous neuropeptides. Chapter 1 will introduce existing sampling techniques and detection schemes for small molecule neurotransmitters and small peptides. We will also introduce two key concepts: insect models for understanding human neurotransmission, and the role of the blood-brain barrier in developing CNS-active pharmaceuticals. In Chapter 2 we develop a method to quantify small molecule neurotransmitters in tissue homogenate for the purpose of understanding how the bulk content of an insect brain can change under differing circumstances. Our approach allows for the analysis of a wider range of compounds with improved throughput compared to existing methods. Chapter 3 expands this method for the quantitation of five biogenic amines in Apis mellifera, to investigate the effect of infection by the microsporidian Nosema ceranae. Chapter 4 explores the role of glycosylation on the stability and blood-brain barrier permeability of peptide-based drugs. Chapter 5 expands this work to a series of Angiotensin 1-7 derivatives, for a study of the effect of different structural modifications to peptide-based drugs, with the goal of driving drug development toward more effective pharmaceuticals. Chapter 6 concludes this work and outlines the future directions of the research.
3

Quantitative Approaches for Protein Differential Expression Analysis

Yang, Xu 07 January 2010 (has links)
In this work, tandem mass spectrometry (MS/MS)-based quantitative protocols were developed to facilitate differential protein expression analysis and biomarker discovery via a two-step sample interrogation strategy: (a) global protein profiling and differential expression analysis by spectral counting; and, (b) biomarker candidate validation by targeted screening, i.e., multiple reaction monitoring (MRM). Preliminary experiments were performed to evaluate the performance of the spectral counting method. The method proved to be applicable for proteins with spectral counts≥2, and a close-to-linear relationship between protein concentration and spectral count data was achievable at protein concentration levels <0.1 μM. The detection limit was 40-800 fmol. A protein/peptide library containing ~10,000 peptide entries that facilitates the development of future MRM experiments, was developed. For each protein, the library provides the number and sequence of detectable peptides, the charge state, the spectral count, the molecular weight, the parameters that characterize the quality of the tandem mass spectrum, the peptide retention time, and the top 10 most intense product ions that correspond to a given parent peptide. Only proteins identified by at least two spectral counts are listed. An MRM experiment was performed to demonstrate the successful applicability of this peptide library for the identification of putative biomarkers in proteomic samples. / Master of Science
4

Protein Set for Normalization of Quantitative Mass Spectrometry Data

Lee, Wooram 20 January 2014 (has links)
Mass spectrometry has been recognized as a prominent analytical technique for peptide and protein identification and quantitation. With the advent of soft ionization methods, such as electrospray ionization and matrix assisted laser desorption/ionization, mass spectrometry has opened a new era for protein and proteome analysis. Due to its high-throughput and high-resolution character, along with the development of powerful data analysis software tools, mass spectrometry has become the most popular method for quantitative proteomics. Stable isotope labeling and label-free quantitation methods are widely used in quantitative mass spectrometry experiments. Proteins with stable expression level and key roles in basic cellular functions such as actin, tubulin and glyceraldehyde-3-phosphate dehydrogenase, are frequently utilized as internal controls in biological experiments. However, recent studies have shown that the expression level of such commonly used housekeeping proteins is dependent on cell type, cell cycle or disease status, and that it can change as a result of a biochemical stimulation. Such phenomena can, therefore, substantially compromise the use of these proteins for data validation. In this work, we propose a novel set of proteins for quantitative mass spectrometry that can be used either for data normalization or validation purposes. The protein set was generated from cell cycle experiments performed with MCF-7, an estrogen receptor positive breast cancer cell line, and MCF-10A, a non-tumorigenic immortalized breast cell line. The protein set was selected from a list of 3700 proteins identified in the different cellular sub-fractions and cell cycle stages of MCF-7/MCF-10A cells, based on the stability of spectral count data (CV<30 %) generated with an LTQ ion trap mass spectrometer. A total of 34 proteins qualified as endogenous standards for the nuclear, and 75 for the cytoplasmic cell fractions, respectively. The validation of these proteins was performed with a complementary, Her2+, SKBR-3 cell line. Based on the outcome of these experiments, it is anticipated that the proposed protein set will find applicability for data normalization/validation in a broader range of mechanistic biological studies that involve the use of cell lines. / Master of Science
5

Comparative Proteomics in the Absence of Tandem Mass Spectra

Wielens, Bjorn 09 December 2013 (has links)
Mass spectrometry plays a significant role in many proteomics experiments owing to its ability to provide high quality, detailed data on complex samples containing proteins and/or their constituent peptides. As with any technology, the capabilities of mass spectrometers are constantly increasing to provide better resolution, faster data acquisition, and more accurate mass measurements. However, the existence and widespread use of previous-generation instruments is not negligible. While these instruments may not have the capabilities of their modern counterparts they are still able to collect useful experimental data, though their limitations can result in trade-offs between certain parameters such as resolution, sample run-time, and tandem MS experiments. This work describes an alternative method of MS data analysis, dubbed Parallel Isotopic Tag Screening (PITS), which seeks to enable higher throughput and the collection of better quality data on such previous generation instruments.
6

A New LC Column for the Separation and the Quantitation of Nucleotides

Brock, Patricia C. (Patricia Charlene) 12 1900 (has links)
A new column, Dionex AS4A, (polystyrenedivinylbenzene matrix) used for the separation of ribonucleotides and deoxyribonucleotides for the first time, and previously used for ion analysis was found superior to conventional silica columns because it separates ribonucleotides and deoxyribonucleotides. Resolution of dGTP was not possible with the Dionex column and CTP and GDP often co-eluted. Using conventional silica columns, monophosphates separated from diphosphates and diphosphates from triphosphates. Using the new Dionex column resolves all three simultaneously. The Dionex column resolved nucleotides with sharper peaks than silica columns, and the longer its retention time the better was the resolution. This Dionex column is stable, with 80 runs possible without cleaning while resolving ribonucleotides and deoxyribonucleotides to the picomole level.
7

Diverse Sample Analysis and Sample Preparation Studies Utalizing AP - MALDI-TOF-MS

Kallop, Sara May 25 July 2012 (has links)
Sample preparation and analysis for atmospheric pressure matrix assisted laser desorption ionization time of flight mass spectrometry (AP- MALDI-TOF-MS) was investigated. By investigating the effects that sample preparation has upon MALDI signal, better analysis can be carried out. The influence of sample deposition was studied by not only observing the signal intensity produced but also by quantitation. Isotope dilution mass spectrometry (IDMS) was used for the quantitation of three different analytes. The results indicated that not only was signal greatly affected by sample deposition but the effect on quantitation error was also statistically significant among the three different sample deposition techniques that were evaluated. &lt;br&gt;Components of sample preparation solution were studied using polyethylene glycol (PEG) and polystryrene (PS) of different weights. This study altered the amounts of matrix, analyte and cationizing agent that were used to make up each sample. Not only did the sample signal intensity greatly vary which had statistical significance but a shifting of the polymer sample peaks was also observed. This confirms that sample preparation is of extreme importance for MALDI analysis. &lt;br&gt;Carpet fibers, glutathione and cell wall extracts from the bacteria Staphylococcus Epidermidis were also studied by AP- MADLI-TOF-MS. These analytes were carefully studied to provide an accurate characterization of each. The diversity of the analytes studied highlights the incredible capabilities that MADLI possesses being able to analyze a range of analytes. Though the samples were diverse each one was able to be completely and comprehensively analyzed using AP-MALDI-TOF-MS. / Bayer School of Natural and Environmental Sciences / Chemistry and Biochemistry / PhD / Dissertation
8

Development and Applications of Stable Isotope Labelling Liquid Chromatography Mass Spectrometry for Quantitative Proteomics

Lo, Andy Unknown Date
No description available.
9

Recent advances in the analysis of polysialic acid from complex biological systems

Guo, Xiaoxiao, Elkashelf, Sara M., Loadman, Paul, Patterson, Laurence H., Falconer, Robert A. 08 August 2019 (has links)
Yes / Polysialic acid (polySia) is a unique, well-characterised carbohydrate polymer highly-expressed on the cell surface of neurons in the early stages of mammalian brain development. Post-embryogenesis, it is also re-expressed in a number of tumours of neuroendocrine origin. It plays important roles in modulating cell-cell, and cell-matrix adhesion and migration, tumour invasion and metastasis. Techniques for structural and quantitative characterisation of polySia from tumours and cancer cells are thus essential in exploring the relationship between polySia expression levels and structural and functional changes associated with cancer progression and metastasis. A variety of techniques have been developed to structurally and quantitatively analyse polySia in clinical tissues and other biological samples. In this review, analytical approaches used for the determination of polySia in biological matrices in the past 20 years are discussed, with a particular focus on chemical approaches, and quantitative analysis.
10

Quantitation of spatially-localized protein in tissue samples using MALDI-MRM imaging

Clemis, Elizabeth J. 28 August 2012 (has links)
MALDI imaging allows the creation of a molecular image of a tissue slice. This image is reconstructed from the ion abundances in spectra that are obtained while rastering the laser over the tissue. These images can then be correlated with tissue histology to detect potential biomarkers of, for example, aberrant cell types. MALDI is known to have problems with ion suppression, making it difficult to correlate measured ion abundance with concentration. It would be advantageous to have a method that can provide more accurate protein concentration measurements, particularly for screening applications or for precise comparisons between samples. My hypothesis was that a method based on multiple reaction monitoring (MRM) with isotopically-labelled internal standards can be developed which would allow the accurate quantitation of proteins in MALDI Imaging. This study reports on the development of this novel MALDI Imaging method for the localization and accurate quantitation of proteins in tissues. This method involves optimization of in-situ tryptic digestion, followed by reproducible and uniform deposition of an isotopically-labelled standard peptide from a target protein onto the tissue, using an aerosol-generating device. Data is acquired by MALDI-MRM-MS and accurate peptide quantitation is determined from the ratio of MRM transitions for the endogenous unlabelled proteolytic peptides to the corresponding transitions from the applied isotopically-labelled standard peptides. In a parallel experiment, the quantity of the labelled peptide applied to the tissue was determined using a standard curve generated from MALDI-TOF-MS data. This external calibration curve was then used to extrapolate the quantity of endogenous peptide in a given area. All standard curves generated by this method had coefficients of determination greater than 0.97. These proof-of-concept experiments using MALDI MRM-based imaging show the feasibility of obtaining precise and accurate quantitation of tissue protein concentrations over two orders of magnitude, while maintaining the spatial localization information for the proteins. / Graduate

Page generated in 0.1267 seconds