Spelling suggestions: "subject:"estearic"" "subject:"stearic""
1 |
A study of Chinese wood oils with special reference to the isolation and the characterization of isomeric eleostearic acids ...Thomson, James Claude, January 1933 (has links)
Thesis (Ph. D.)--Columbia University, 1933. / Vita. Bibliography: p. 34.
|
2 |
Beyond Lipoxygenase: Studying the Initiation of Ferroptosis & On the Mechanism Behind α-Eleostearic Acid AutoxidationShort, Spencer 14 January 2021 (has links)
Ferroptosis is a recently characterized cell death pathway associated with the iron-dependent accumulation of lipid hydroperoxides in phospholipid bilayers. The origin of these hydroperoxides has been an ongoing topic of debate and many researchers argue for a lipoxygenase (LOX) enzyme-controlled mechanism of initiation, given their known role as dioxygenases of polyunsaturated fatty acids (PUFAs). In response to this, our lab investigated the induction and inhibition of ferroptosis in human embryonic kidney (HEK-293) cells transfected to overexpress the three most prevalent LOX isoforms, 5-LOX, p12-LOX, and 15-LOX-1. These studies did not support a role for LOX in the execution of ferroptosis; LOX inhibition was not associated with ferroptosis suppression and in fact, anti-ferroptotic activity was directly tied to purported LOX inhibitors’ ability to act as radical-trapping antioxidants (RTAs). We have investigated the effects of LOX inhibitors on ferroptosis in human fibrosarcoma (HT-1080) cells, the cell line in which ferroptosis was initially characterized, and mouse hippocampal neuronal (HT-22) cells, the cell line in which the closely related cell death modality oxytosis was characterized. In sum, our findings mirror those obtained in HEK-293 cells, and the effectiveness of an inhibitor is tied to its off-target RTA activity, not inhibition of LOX. Moreover, we observed suppression of ferroptosis via necrostatin-1 (Nec-1), a known receptor-interacting serine/threonine-protein kinase 1 (RIPK1) (and necroptosis) inhibitor. Herein, we show that Nec-1 is not an RTA and exerts its effects by a yet unknown mechanism which we investigate in a series of exploratory experiments.
Conjugated fatty acids – particularly α-ESA – have recently been reported to induce ferroptosis by an unclear mechanism. Theorizing this phenomenon was tied to the autoxidation of α-ESA’s conjugated trienic unit, we aimed to investigate the kinetic and biological properties of natural α-ESA alongside a deuterated isotopologue. Herein, we report preliminary work to derive biologically relevant rate constants for addition and hydrogen-atom transfer (HAT) of α-ESA. Moreover, we report our progress towards the synthesis of a deuterated α-ESA which will facilitate future study alongside its natural counterpart.
|
3 |
Determining biological roles of four unique Vernicia fordii acyl-CoA Binding ProteinsPastor, Steven 20 May 2011 (has links)
High-value industrial oils are essential for many processes and have great economic and environmental impacts. The tung tree produces a high-value seed oil. Approximately 80% of tung oil is α-eleostearic acid, which has a high degree of unsaturation thus giving it properties as a drying oil. The identification of the biological components in tung is imperative to further the knowledge of its processes. Four unique tung acyl-CoA binding proteins, VfACBP3a, VfACBP3b, VfACBP4, and VfACBP6 were identified and the genes encoding them were cloned and analyzed to determine their biological roles. The VfACBPs were observed to be similar to other organisms' ACBPs, especially Arabidopsis thaliana. In addition, each gene was expressed in all tung tissues. They were shown to interact with VfDGAT1 and VfDGAT2, two known components of tung lipid metabolism. Finally, VfACBP3a and VfACBP6 were expressed in the seeds of transgenic plants to study the effects of VfACBP expression on seed lipid fatty acid content.
|
4 |
Développement de tests enzymatiques applicables au criblage des activités et/ou inhibiteurs de (phospho)lipases / Development of high throughput screening assays for measuring (phospho)lipase activities and/or inhibitorsEl Alaoui, Meddy 23 October 2015 (has links)
La caractérisation de l'activité enzymatique des (phospho)lipases requiert des tests enzymatiques spécifiques, continus, utilisant des substrats lipidiques et adaptés au criblage à haut débit des activités et/ou des inhibiteurs de (phospho)lipases. Afin de développer de tels tests, la synthèse de glycérophosphatidylcholine (PC) estérifiée en position sn-1 et/ou sn-2 par l'acide alpha-éléostéarique (acide 9Z, 11E, 13E, octadécatriénoïque) a été effectuée. La triple insaturation conjuguée présente au sein de cet acide gras constitue un chromophore intrinsèque qui confère une forte absorption dans le domaine de l'ultra-violet à cet acide gras et aux lipides le contenant. Les PC contenant l'acide alpha-éléostéarique ont été adsorbées par « coating » au fond des puits d'une microplaque de titration. L'hydrolyse du substrat lipidique par une phospholipase A1 (PLA1) ou phospholipase A2 (PLA2), injectée dans le milieu réactionnel, est suivie en continu par l'augmentation de l'absorbance à 272 nm, due à la transition de l'acide alpha-éléostéarique de la phase adsorbée à la phase aqueuse. Des PC hétérogènes ont été synthétisées à partir de rac-glycidol pour effectuer un marquage sélectif de la PC par l'acide alpha-éléostéarique sur la position sn-1 (EOPC) ou sn-2 (OEPC). Pour empêcher la migration de la chaîne acyle, un lien éther non hydrolysable par les PLA1 ou PLA2 a été introduit sur l'autre position sn de la PC avec une chaîne alkyl (C18). Ces PC chimiquement définies ont permis d'élaborer une méthode de dosage en continu de l'activité enzymatique et discriminant les activités PLA1 ou PLA2, ce qui représente un caractère innovant par rapport à toutes les méthodes existantes / The characterization of the catalytic activity of (phospho)lipases requires specific assays, that are continuous, sensitive, use lipidic substrates and could be applied to high throughput screening. In order to perform these tests, several tailor-made alpha-eleostearic (9Z, 11E, 13E-octadecatrienoic acid) containing glycerophosphatidylcholines (PC) have been synthetized with the alpha-eleostearic acid at the position sn-1 and/or sn-2. The conjugated triene present in this fatty acid constitutes an intrinsic chromophore and, consequently, confers strong UV absorption properties of the fatty acid and the lipids harboring it. PC substrates were coated onto a microplate well and the phospholipase A1 (PLA1) or phospholipase A2 (PLA2) activity was measured continuously by the increase in absorbance, at 272 nm, due to the transition of alpha-eleostearic acid from the adsorbed to the soluble state. Moreover, two structured analogues of PC labeled at the sn-1 (EOPC) or sn-2 (OEPC) position with the alpha-eleostearic acid have been synthetized from rac-glycidol. A non-absorbing and non-hydrolysable by PLA1 and PLA2 O-ether alkyl(C18) was introduced at the other sn position to prevent intramolecular acyl chain migration during the synthesis and the lipolysis. These structured PC were coated onto a microplate and used in a continuous assay, to discriminate, with excellent accuracy, between PLA1 or PLA2 activities. The development of a sensitive enzymatic method using coated substrates analogues to natural lipid is a relevant improvement from current assays for measuring continuously (phosphor)lipases activities and/or their inhibitors due to the alpha-eleostearic acid UV spectroscopic properties
|
Page generated in 0.0473 seconds