• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 38
  • 19
  • 9
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 189
  • 121
  • 68
  • 37
  • 34
  • 32
  • 30
  • 28
  • 27
  • 26
  • 24
  • 23
  • 23
  • 22
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Stress corrosion cracking and hydrogen embrittlement of a martensitic high strength stainless steel

Northover, Jeremy Peter January 1974 (has links)
No description available.
42

An Investigation of Bent-Beam Stress-Corrosion Test for Titanium Alloys

León Zapata, Daniel January 2019 (has links)
Titanium alloys are highly resistant to all types of corrosion due to their excellent ability to form an oxide film on the surface. However, under certain circumstances, these alloys may experience an environmental degradation which could potentially, under the application of mechanical stress, lead to a complete failure of the material. One of these cracking processes is stress-corrosion cracking (SCC). SCC has an embrittling effect on otherwise ductile materials under tensile stress. Since titanium alloys are frequently used in the aerospace industry and it is therefore of interest to test these alloys in different environment in order to prevent any future accidents. SCC testing is frequently tested at GKN Aerospace and a new testing method is of interest. The main objective with this work was to gain knowledge of the testing method. Bent-beam testing method has been used to investigate stress-corrosion cracking (SCC) of titanium alloys in a laboratory based experiment. The bent-beam testing method was of type 2-point bent beam test, where a saline solution was applied at the apex of the specimen. The specimens were loaded to a range of stresses from 40%, to 95% of the materials yield strength and the salt concentration in the saline solution was 1wt% and 3wt%. By doing so, a relative susceptibility of the different alloys could be established. Three different titanium alloys were tested: Ti-6Al-4V, Ti-8Al-1Mo-1V, and Ti-6Al-2Sn-4Zr-2Mo. The testing method was able to cause cracking on all titanium alloys, where Ti-6Al-4V was found to be the least susceptible to SCC. Ti-8Al-1Mo-1V, and Ti-6Al-2Sn-4Zr-2Mo showed an overall high susceptibility to SCC as cracking occurred in all testing configurations. Cracking was observed on both the surface of the specimen as well as in the cross sections, where the cracks grew perpendicular to the surface. SEM was also used to evaluate the crack propagation in Ti-8Al-1Mo-1V, and Ti-6Al-2Sn-4Zr-2Mo, and it was found that the cracks grew mostly along the grain boundaries.
43

[en] CARACTHERIZATION OF MECHANICAL PROPERTIES ON SAE 4140 STEEL AFTER DIFFERENT TREATMENTS OF QUENCHING AND TEMPERING / [pt] CARACTERIZAÇÃO DAS PROPRIEDADES MECÂNICAS DO AÇO SAE 4140 APÓS DIFERENTES TRATAMENTOS DE TÊMPERA E REVENIDO

LUIS PAULO PIRES GONCALVES RIBEIRO 14 March 2007 (has links)
[pt] Os aços de alta resistência e baixa liga (ARBL) pertencem a uma classe de aços que desperta o interesse de pesquisadores da área metal-mecânica. A pesquisa teve como objetivos estudar a influência dos tratamentos térmicos de têmpera e revenido sobre as propriedades do aço SAE 4140 e avaliar o comportamento do aço SAE 4140 quando submetido ao revenido na faixa de temperatura característica da fragilização. Inicialmente, o material foi tratado termicamente sob diferentes condições de têmpera e revenido. Após a usinagem dos corpos de prova, foram realizados ensaios de tração e energia ao impacto, bem como caracterizações microestruturais e fractográficas. Os resultados mostraram que as propriedades mecânicas do aço SAE 4140 foram influenciadas pelos parâmetros de revenido, em particular temperatura, além do tempo de permanência no forno antes do resfriamento. / [en] The high strength and low alloy steels (HSLA) belong to a class of steels in which researchers of the metal-mechanic area have particular interest. The aim of this work is to verify the influence of quenching and tempering heat treatments on the properties of the SAE 4140 steel as well as to evaluate its behaviour when subjected to tempering in a temperature range associated with the material´s embrittlement. At first, the material was heat treated according with different quenching and tempering conditions. In the sequence, specimens machined from the treated material were subjected to tensile and impact energy tests and characterized by microstructural and fractographic analysis. The results showed that the mechanical properties of the material were influenced by the tempering parameters, specially temperature and time of treatment as well as the permanence time of the specimens in the furnace before cooling.
44

Ferrita delta em parafusos tratados termicamente: caracterização e consequências / Delta ferrite in heat treated bolts: characterization and consequences

Bussoloti, Robson Silva 29 July 2014 (has links)
Nos processos de fabricação de parafusos, a fosfatização é necessária para servir de ancoradouro aos lubrificantes, e outros redutores de atrito, por facilitarem o processo de deformação a frio. No entanto, antes do início do tratamento térmico de têmpera e revenimento, é importante que o banho de desfosfatização seja eficiente para impedir que, durante a austenitização, o fósforo residual presente na superfície do parafuso se difunda para o aço e forme uma fase frágil, rica em fósforo, denominada ferrita delta (&#948). Acredita-se que esta fase, uma vez presente, promove não apenas a diminuição da vida em fadiga mas, também, a fragilização do parafuso. Neste sentido, o presente trabalho objetivou comprovar a influência negativa dessa fase, devidamente caracterizada por MEV, EDS e análise fractográfica, quanto ao desempenho à fadiga, através da comparação das curvas S-N em corpos de prova com e sem ferrita &#948. Os resultados obtidos claramente evidenciaram que a presença da fase &#948 promoveu uma redução de até 40% na vida em fadiga. / In the process of manufacturing bolts, a coat phosphating is required to serve as anchorage for lubricants and other friction-reducer, facilitating the cold forming process. However, before the beginning heat treatment of quenching and tempering, it is important that the alkaline bath for cleaning be efficient in order to prevent that during austenitizing, the residual phosphorus spread on the steel surface and forms a brittle phase, rich in phosphorus, called delta ferrite (&#948). In the presence of this phase, is credited with a decrease in fatigue life of the bolt and embrittlement. The intention in this work was to show the negative influence of this phase on fatigue performance, comparing the S-N curves for specimens with and without ferrite &#948. Trials have shown a reduction of up to 40% in life fatigue. The ferrite &#948 was characterized by SEM, EDS and also performed fractographic analysis.
45

Mechanisms of environmentally influenced fatigue crack growth in lower strength steels

Suresh, Subramanian January 1981 (has links)
Thesis (Sc.D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1981. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Subramanian Suresh. / Sc.D.
46

On the hydrogen embrittlement of oil and gas grade alloy 718 and alloy 945X

Brown, Michael January 2017 (has links)
Hydrogen embrittlement is a mechanism by which hydrogen enters a metal, causing a loss in strength and ductility. This phenomenon is of great concern to the oil and gas industry as deep-sea wells operate in high temperature, highly acidic and high stress conditions. Nickel-based superalloys are ideal for use in such environments due to their high strength and exceptional resistance to both corrosion and hydrogen embrittlement. Alloy 945X is a newly developed nickel-based superalloy that has been specifically designed for use in downhole applications. This thesis compares the performance of hydrogenated Alloy 945X with the more established oil and gas grade Alloy 718. The hydrogenating environment of an oil well was simulated via cathodic polarisation. The effect of hydrogen content on the tensile performance of both alloys was studied, alongside fracture and microstructural analysis. A new video-recording technique was employed to investigate the crack initiation and propagation behaviour of both alloys, alongside in-SEM tensile testing. The diffusive nature of hydrogen in Alloy 945X and Alloy 718 was explored. With the use of a ppm-sensitive hydrogen analyser, it was possible to measure the rate at which hydrogen enters and outgassed from both materials as well as the saturation conentrations. Outgassing behaviour was also examined using X-ray diffraction and nano-indentation. The depth of brittle fracture in cathodically charged tensile specimens was correlated with Fick’s diffusion calculations and the critical concentration for embrittlement calculated. In a similar method, a parameter (based on diffusion coefficient calculations) that describes the rate of embrittlement in a material was proposed.
47

Hydrogen embrittlement in nuclear and bearing applications : from quantum mechanics to thermokinetics and alloy design

Stopher, Miles Alexander January 2018 (has links)
Hydrogen embrittlement in ferrous and non-ferrous alloys is, and has been for over a century, a prominent issue within many sectors of industry. Despite this, the mechanisms by which hydrogen embrittlement occurs and the suitable means for its prevention are yet to be fully established. As hydrogen fuel becomes a prominent feature in modern concepts of a sustainable global energy infrastructure and nuclear power enters its renaissance, with commercially viable fusion plants on the horizon, hydrogen embrittlement is becoming an ever more pertinent issue. This has led to a considerable demand for novel alloys resistant to hydrogen embrittlement, notably within the bearings industry, where the commonly conflicting properties of high strength and hydrogen embrittlement resistance are required. This work investigates the mechanisms through which hydrogen embrittlement and irradiation damage occur in steels and nickel-based alloys respectively, with novel alloys designed for improved resistance. Through the engineering of secondary phases, optimised for helium and/or hydrogen trapping capacity, the novel alloys present the benefits of such trapping species with respect to embrittlement resistance. Such species have been studied in depth with respect to their interactions with hydrogen, establishing a novel mechanism of hydrogen embrittlement - the hydrogen enhanced dissolution and shearability of precipitates, leading to enhanced localised plasticity.
48

Microstructural Evaluation of Hydrogen Embrittlement and Successive Recovery in Advanced High Strength Steel

Allen, Quentin Scott 01 December 2017 (has links)
Advanced high strength steels (AHSS) have high susceptibility to hydrogen embrittlement, and are often exposed to hydrogen environments in processing. In order to study the embrittlement and recovery of steel, tensile tests were conducted on two different types of AHSS over time after hydrogen charging. Concentration measurements and hydrogen microprinting were carried out at the same time steps to visualize the hydrogen behavior during recovery. The diffusible hydrogen concentration was found to decay exponentially, and equations were found for the two types of steel. Hydrogen concentration decay rates were calculated to be -0.355 /hr in TBF steel, and -0.225 /hr in DP. Hydrogen concentration thresholds for embrittlement were found to be 1.04 mL/100 g for TBF steel, and 0.87 mL/100g for DP steel. TBF steel is predicted to recover from embrittlement within 4.1 hours, compared to 7.2 hours in DP steel. A two-factor method of evaluating recovery from embrittlement, requiring hydrogen concentration threshold and decay rate, is explained for use in predicting recovery after exposure to hydrogen. Anisotropic hydrogen diffusion rates were also observed on the surface of both steels for a short time after charging, as hydrogen left the surface through <001> and <101> grains faster than grains with <111> orientations. This could be explained by differences in surface energies between the different orientations.
49

Estudo das microestruturas e propriedades obtidas por tratamentos intercrí­ticos e por tratamento de estampagem a quente em um aço Dual Phase classe 600. / Study of the microstructures and properties of Dual Phase DP 600 steel after intercritical heat treatments and hot stamping.

Andrade Centeno, Dany Michell 12 November 2018 (has links)
Novos tratamentos térmicos e a otimização dos processos de conformação têm contribuído para o desenvolvimento de microestruturas multifásicas com excelente combinação de ductilidade e resistência mecânica. Parte dessa melhoria depende da presença de austenita retida, de sua estabilidade e fração volumétrica. O presente trabalho tem como objetivo caracterizar a evolução da microestrutura e comportamento das propriedades mecânicas do aço dual phase classe 600 (DP 600), após tratamentos térmicos intercríticos de têmpera e partição (Q&P) e reversão da martensita, assim como tratamentos termomecânicos de simulação física da estampagem a quente (HS), variando a deformação em 10% (HS 10) e 30% (HS 30), e combinando estampagem a quente com subsequente tratamento de têmpera e partição (HSQ&P). Duas condições microestruturais de partida diferentes foram utilizadas nos tratamentos térmicos. Para os tratamentos térmicos e termomecânicos Q&P, HS e HSQ&P a microestrutura de partida foi a bifásica (ferrita e martensita). Já para o tratamento térmico de reversão a microestrutura de partida foi modificada para martensítica. Os tratamentos puramente térmicos foram realizados no dilatômetro Bähr do Laboratório de Transformações de Fase (LTF); entretanto, os tratamentos termomecânicos foram feitos no simulador termomecânico Gleeble®, acoplado à linha de difração de raios X (XTMS) do Laboratório Nacional de Nanotecnologia (LNNano). A análise microestrutural foi feita com suporte de microscopia ótica (MO) e eletrônica de varredura (MEV-FEG), EBSD, e difração de raios X in situ e convencional. Avaliaram-se as propriedades mecânicas por ensaio de tração em corpos de prova sub-size e endentação instrumentada. As amostras Q&P, HS e HSQ&P foram submetidas a ensaios exploratórios de resistência ao trincamento por hidrogênio (HIC) segundo a norma NACE TM0284. Adicionalmente, foi feita a medição de hidrogênio ancorado na microestrutura estudada, após tratamentos, utilizando a técnica de dessorção térmica disponível no LNNano. A avaliação das mudanças microestruturais e de propriedades mecânicas após tratamentos térmicos foram discutidas separadamente para cada microestrutura de partida. Os resultados dos processos Q&P, HS e HSQ&P no aço, mostraram que a evolução da microestrutura levou a formação de uma microestrutura mais complexa do que a microestrutura ferrítico-martensítica simples do material como recebido. A complexa microestrutura é dada pela formação de ferrita epitaxial durante a etapa de tratamento intercrítico, ferrita induzida por deformação (DIFT) na etapa de deformação em alta temperatura e bainita na etapa de partição. Essa mistura microestrutural levou a variações na relação das frações volumétricas de ferrita e martensita em relação às frações iniciais do aço, assim como na presença de austenita retida e sua estabilidade. Com base nos resultados é possível afirmar que o processo Q&P produz um aumento nas propriedades mecânicas do material. Por outro lado, após o ensaio de HIC todas as amostras apresentaram susceptibilidade ao trincamento; contudo, a severidade do dano foi maior nas amostras deformadas HS 30. Os ensaios preliminares de dessorção mostraram maior aprisionamento de hidrogênio em armadilhas reversíveis nas amostras HSQ&P e irreversíveis na amostra HS 30. Na segunda parte, os resultados do tratamento de reversão sugerem que, em geral, a microestrutura do aço processado compreende uma morfologia em ripas de ferrita intercrítica, martensita e filmes de austenita retida. A maior temperatura de reversão intercrítica resultou em menor fração de ferrita intercrítica. Por outro lado, a temperatura intercrítica de reversão influenciou significativamente a estabilidade da austenita retida. Uma alta fração de austenita retida foi obtida a uma temperatura ligeiramente acima da temperatura Ac1. Um segundo ciclo de reversão promoveu a difusão de C e Mn para a austenita revertida tornando-a mais estável a temperatura ambiente. / Novel Heat Treatments and the optimization of the forming processes have contributed to the development of multiphase microstructures with attractive combinations of ductility and mechanical resistance. This improvement partially depends on the presence, stability and volume fraction of retained austenite. The objective of this work is to characterize the evolution of the microstructure and mechanical properties of a class 600 dual phase steel (DP 600), as a function of the thermal and thermomechanical history. Two initial microstructures were used in this study. A ferritic-martensitic microstructure was used as the starting condition for inter-critical heat treatments followed by quenching and partitioning (Q&P) and for the thermomechanical simulations of the hot stamping (HS) process. The latter applying deformations of 10% (HS 10) and 30% (HS 30) combining hot stamping with subsequent quenching and partition (HSQ&P). The thermal cycles were performed in a Bähr dilatometer at the Laboratory of Phase Transformations (LTF), then duplicated using a Gleeble® thermomechanical simulator, coupled to the X-ray Scattering and Thermo-mechanical Simulation beamline (XTMS) at the Brazilian Nanotechnology National Laboratory (LNNano). The microstructural analysis was performed using optical microscopy (MO) and scanning electron (SEM-FEG), Electron Backscatter Diffraction (EBSD), and in situ and conventional X-ray diffraction. The mechanical properties were evaluated by tensile testing on sub-size specimens and by instrumented macro-nano indentation tests. The evolution of the microstructure and mechanical properties for each starting microstructure was discussed separately. The Q&P, HS and HSQ&P samples were submitted to exploratory tests of resistance to hydrogen induced cracking (HIC) according to NACE TM0284. Additionally, hydrogen measurements were performed for the microstructures obtained after Q&P and HDQ&P using the thermal desorption technique at LNNano. After Q&P, HS and HSQ&P, the resultant microstructure was more complex than the as-received ferritic-martensitic condition. Such complexity comes from the formation of epitaxial ferrite from the former ferritic phase during the intercritical treatment step, the deformation induced ferrite (DIFT) and the bainite formation during the partitioning step. This led to variations in the volumetric fraction of ferrite and martensite in relation to the initial fractions of the as-received condition, as well as the presence of retained austenite and its stability upon cooling. The Q&P process increased the mechanical properties of the material. On the other hand, all microstructures showed susceptibility to hydrogen cracking after 72 hours of H2S exposure tests. However, the damage was more severe for the HS samples with 30% of deformation. The preliminary desorption tests showed greater hydrogen trapping in reversible traps after HSQ&P and in irreversible traps for the HS with 30% deformation. A second set of experiments was conducted for a different microstructure consisting of a fully martensitic matrix as the initial condition. After intercritical reversion, the resultant microstructure comprised intercritical lath-like ferrite, martensite laths and retained austenite films. The higher the intercritical reversion temperature, the smaller the fraction of intercritical ferrite. On the other hand, the transformation temperature significantly influenced the stability of the retained austenite. The highest fraction of retained austenite was obtained when the transformation occurred slightly above the Ac1 temperature. A double intercritical reversion cycle promoted the diffusion of C and Mn to the reversed austenite making it more stable upon cooling to room temperature, leading to a better combination of strength and ductility.
50

Fragilisation par l'hydrogène en fatigue oligocyclique de l'Inconel 718 issu d’un procédé de fabrication additive (LBM) / Hydrogen embrittlement on the low cycle fatigue behavior of laser beam melting Inconel 718 (LBM)

Puydebois, Simon 13 February 2019 (has links)
Cette étude porte sur la sensibilité à la fragilisation par l'hydrogène (FPH) d'un alliage base nickel, l’Inconel 718 issu d’un procédé de fabrication additive (FA), sous sollicitation cyclique. Cematériau est utilisé pour la réalisation de certains composants des ensembles propulsifs d’Ariane qui sont fabriqués par Ariane Group. Dans ce domaine, certaines pièces sont sollicitées sous « ambiancehydrogène ». Ainsi, le risque de fragilisation de ces pièces est une problématique de premier ordre.Pour cela, nous avons caractérisé l’état métallurgique d’un Inconel 718 FA à différentes échelles structurales afin d’observer un possible impact du procédé de mise en œuvre sur la microstructure, puis d’envisager sa conséquence sur le comportement mécanique et la sensibilité à la FPH de l’alliage. Notons que nous avons conduit une étude plus réduite sur un alliage forgé afind’avoir des éléments de comparaison. Afin de comprendre les mécanismes de fragilisation par hydrogène de l’Inconel 718 FA, il est nécessaire de connaitre l’état et la mobilité de l’hydrogène dans le matériau. Des analyses deperméation électrochimique (PE) et gazeuse (PG), ainsi que de spectroscopie de désorption thermique (TDS) apportent des éléments de compréhension des mécanismes de piégeage et de diffusion de l’hydrogène. Ils permettent de discuter l’implication des joints de grains dans les mécanismes dediffusion ainsi que l'effet des hétérogénéités microstructurales sur les mécanismes de piégeage dans l’Inconel 718 FA.D'autre part, l’influence de l’hydrogène sur le comportement mécanique a été questionnée en traction et en fatigue oligocyclique en terme de comportement élasto-viscoplastique, de processus d’initiation, de propagation de fissure en fatigue et de ténacité. Dans ce cadre nous présentons, dans unpremier temps, l’étude du comportement en traction et sa sensibilité à l’hydrogène pour l’Inconel 718 FA. Nous questionnons lors de cette partie l’effet de la vitesse de sollicitation sur les mécanismes defragilisation ainsi que sur les différentes interactions hydrogène/matériau. Des essais de traction interrompue ont été réalisés afin de questionner l’effet de l’hydrogène sur le comportement viscoplastique et notamment questionner les interactions hydrogène/plasticité.Dans un deuxième temps, le comportement en fatigue de l’Inconel 718 FA en présence d’hydrogène gazeux est interrogé à l’aide d’essais de fatigue pour un rapport de charge, R de 0,1 sous une pression d’hydrogène de 300 bar. Il est clairement mis en évidence une réduction du nombre decycles à rupture en présence d’hydrogène ainsi qu’un changement de mode de rupture. L’impact de l’hydrogène a été évalué sur les étapes d’initiation et de propagation de fissures ainsi que sur la ténacité du matériau en fonction de la métallurgie de l’alliage.L'ensemble des résultats obtenus permettent une discussion de la sensibilité du matériau à la FPH, tenant compte en particulier des interactions hydrogène/plasticité. / This study focuses on the hydrogen embrittlement sensitivity (HE) under cyclic loading of a nickel based alloy, Inconel 718, manufactured by the additive manufacturing process (AM). This material is used in some components of Ariane cryogenic engines that are manufactured by ArianeGroup. Some of these components are solicited under "hydrogen atmosphere", and the risk of embrittlement is a major problem.The metallurgical states of the Inconel 718 AM alloy have been characterized at different structural scales in order to observe a possible impact of the manufacturing process on the microstructure and discuss the possible consequences on the mechanical behaviour of the alloy underhydrogen pressure. Moreover, a forged alloy has also been studied for comparison.To discuss the mechanisms of hydrogen embrittlement in the material, it is first necessary to study the hydrogen behaviour in the material. Electrochemical and gaseous permeation analyses as well as TDS were performed to provide insights into the mechanisms of hydrogen diffusion. Fromthese results, the involvement of grain boundaries in the diffusion mechanisms and the effect of microstructural heterogeneities on the trapping mechanisms in this material have been discussed.On the other hand, the influence of hydrogen on the mechanical behaviour has been investigated under monotonic and cyclic loading in terms of elasto-viscoplastic behaviour, crack initiation process, fatigue crack propagation and toughness. In a first part, the tensile behaviour of the Inconel 718 AMunder hydrogen pressure has been considered. The effects of the loading rate on the mechanisms of embrittlement have been addressed. Moreover, interrupted tensile tests have been carried out to identify the effect of hydrogen on the viscoplastic behaviour and allowing to discuss hydrogen /plasticity interactions.The fatigue behaviour of Inconel 718 AM in the presence of hydrogen gas was investigated by cyclic tests for a 0.1 load ratio (R) under a 300 bar H2 at room temperature. It has been shown that hydrogen leads to a clear decrease of the number of cycles to rupture and to a change in failure mode.The impact of hydrogen has been evaluated on the fatigue crack initiation and propagation stages as well as on the toughness of the material.Finally, all the obtained results allowed a discussion of the hydrogen embrittlement sensitivity of the material, taking into account the hydrogen / plasticity interactions.

Page generated in 0.0845 seconds