521 |
Embryogenesis is dependent upon 12-lipoxygenase, 5-lipoxygenase, and α-tocopherol to modulate polyunsaturated fatty acid status and the production of oxidized fatty acids in zebrafish / Embryogenesis is dependent upon 12-lipoxygenase, 5-lipoxygenase, and alpha-tocopherol to modulate polyunsaturated fatty acid status and the production of oxidized fatty acids in zebrafishLebold, Katherine M. 25 May 2012 (has links)
Arachidonic acid (ARA) and docosahexaenoic acid (DHA) are polyunsaturated fatty acids required for proper embryonic development, specifically neurodevelopment. However, little is known regarding their conversion to other metabolites during embryogenesis. The oxidation of ARA gives rise to the biologically active eicosanoids and the oxidation of DHA gives rise to the biologically active docosanoids. The oxidation of ARA and DHA occurs through enzymatic processes, via lipoxygenase (LOX), or non-enzymatic processes, via radical-mediated lipid peroxidation. We hypothesize that oxidation of ARA and DHA via LOX is required for proper embryonic development. Additionally, we hypothesize that α-tocopherol, a potent lipid soluble antioxidant, mediates the conversion of ARA and DHA to their respective oxidized metabolites. Using zebrafish as a model of vertebrate embryogenesis, we found that the selective knockdown of either 12-LOX or 5-LOX decreased the production of docosanoids, altered fatty acid homeostasis, and increased the incidence of malformations and mortality in embryos by 24 hours post fertilization. α-Tocopherol deficiency also increased the incidence of malformations and mortality during embryogenesis, and in its absence, increased oxidized metabolites of ARA and DHA and decreased fatty acids concentrations. Therefore, oxidized metabolites of ARA and DHA perform crucial functions during embryonic development, but the production of oxidized fatty acids must be balanced with antioxidant bioavailability for proper embryogenesis. / Graduation date: 2012
|
522 |
Life history and environmental influences on avian incubation and parental care in songbirdsAustin-Bythell, Suzanne H. 13 March 2015 (has links)
Patterns of nest attendance behavior by breeding birds represent a parent-offspring
trade-off in which adults balance self-maintenance with parental care decisions.
Incubation, in particular, is of interest because adults must provide an environment
suitable for embryonic development through nest-building and contact-incubation.
We evaluated how adult incubation constancy and nest visitation rates varied with
life and natural history traits of temperate and tropical bird species. We found that
constancy did not differ by latitude or with nest survival rate. A strong negative
correlation between incubation constancy and egg mass relative to adult body mass
was present. Birds with low constancy tended to have larger relative egg masses
and higher basal metabolic rate. Because adult incubation constancy is relatively
plastic (i.e., varies with ambient temperature), birds with larger relative eggs may
respond to lower cooling rates rather than direct selection for higher or lower
constancy. We then assessed if rates of nest visitation (trips to nests by adults
during incubation and nestling phases) followed the predictions of the Skutch
hypothesis. Skutch suggested that birds nesting in environments with high levels
of nest predation would reduce numbers of trips to their nests so as to minimize the
risk of visual detection by nest predators. We found support for the basic pattern
predicted by Skutch. We also extended his hypothesis to predict other behavior
associated with nesting, such as responses of parents to intruders at the nest.
Despite apparently early departure from the nest site, adults with higher visitation
rates remained conspicuous around the nest site. Thus, while the flight initiation
distance from the human observer was earlier than expected, conspicuousness of
behavior was associated with nest visitation rate. Finally, we assessed how an
environmental variable, photoperiod, might influence rate of embryonic
development in a wild songbird, Sylvia atricapilla. We exposed eggs throughout
the incubation period to daily photoperiods consisting of 4 hours of light and 20
hours of dark (4L), 12 hours light and 12 hours dark (12L), 20 hours light and 4
hours dark (20L) and a skeleton photoperiod with two 1-hour pulses of light that
framed a 20-hour day. We found that the skeleton treatment group differed
significantly from our 4L and 12L, but not the 20L treatment groups. The skeleton
photoperiod accelerated embryonic development. We suggest that photoperiod
may influence incubation period in wild birds and could account for some portion
of the widely observed latitudinal variation in incubation period of songbirds. We
encourage others to assess how photoperiod interacts with parental attendance
patterns to affect embryonic development. / Graduation date: 2013 / Access restricted to the OSU Community at author's request from March 13, 2013 - March 13, 2015
|
523 |
Average Cell Orientation, Eccentricity and Size Estimated from Tissue ImagesIles, Peter January 2005 (has links)
Five image processing algorithms are proposed to measure the average orientation, eccentricity and size of cells in images of biological tissue. These properties, which can be embodied by an elliptical 'composite cell', are crucial for biomechanical tissue models. To automatically determine these properties is challenging due to the diverse nature of the image data, with tremendous and unpredictable variability in illumination, cell pigmentation, cell shape and cell boundary visibility. One proposed algorithm estimates the composite cell properties directly from the input tissue image, while four others estimate the properties from frequency domain data. The accuracy and stability of the algorithms are quantitatively compared through application to a wide variety of real images. Based on these results, the best algorithm is selected.
|
524 |
Average Cell Orientation, Eccentricity and Size Estimated from Tissue ImagesIles, Peter January 2005 (has links)
Five image processing algorithms are proposed to measure the average orientation, eccentricity and size of cells in images of biological tissue. These properties, which can be embodied by an elliptical 'composite cell', are crucial for biomechanical tissue models. To automatically determine these properties is challenging due to the diverse nature of the image data, with tremendous and unpredictable variability in illumination, cell pigmentation, cell shape and cell boundary visibility. One proposed algorithm estimates the composite cell properties directly from the input tissue image, while four others estimate the properties from frequency domain data. The accuracy and stability of the algorithms are quantitatively compared through application to a wide variety of real images. Based on these results, the best algorithm is selected.
|
525 |
NORMAL AND PATHOLOGICAL DEVELOPMENT OF THE RODENT PRIMORDIAL DIAPHRAGMAbou Marak Dit Roum, Darine Unknown Date
No description available.
|
526 |
PAX 23 in normal kidney development and as therapeutic targets in renal cancerHueber, Pierre-Alain. January 2007 (has links)
The PAX gene family of transcription factors plays a prominent role during embryogenesis however can be aberrantly re-activated during tumorigenesis and contributes to the malignant phenotype. / During embryonic kidney development, PAX2 exerts an anti-apoptotic function however its expression typically attenuates during the post-natal period. On the other hand, PAX2 aberrant expression is observed in the majority of Renal Cell Carcinomas (RCC). RCC is resistant to chemotherapy; up-regulation of anti-apoptotic genes is recognized to contribute to tumor resistance to chemotherapy. We hypothesized that the anti-apoptotic effect of the PAX2 gene that is expressed in RCC cells contributes to RCC and their resistance to chemotherapy-induced cell death. / Human embryonic kidney (HEK293) cells transfected with a PAX2 expression vector and exposed to cisplatin, were protected from apoptosis compared to control cells. Conversely, murine collecting duct cells stably transfected with PAX2 antisense cDNA had twofold increases in cisplatin-induced apoptosis. Similarly, PAX2 knockdown using PAX2 siRNA in RCC cells CAKI-1 and ACHN enhances cisplatin-induced apoptosis in vitro. / To test the combination of PAX2 expression silencing and cisplatin treatment in vivo we developed a model of renal tumors by injecting ACHN cells as a xenograft under the skin of nude mice. I showed that a PAX2 shRNA successfully knocks down PAX2 mRNA and protein levels in a RCC cell line (ACHN). ACHN cells stably transfected with shRNAs targeted against the PAX2 homeodomain, are more susceptible to cisplatin-induced caspase-3 activation than the control ACHN cell line. Furthermore, growth of subcutaneous ACHN/shPAX2 xenografts in nude mice is significantly more responsive to cisplatin therapy than control of ACHN cell tumors. This work proposes PAX2 as a potential therapeutic gene target in metastatic renal cell carcinoma and suggests that adjunctive PAX2 knockdown may enhance the efficacy of chemotherapeutic agents such as cisplatin. / Wilms tumor, the most common pediatric renal cancer, is thought to arise from a progenitor cell of the metanephric mesenchyme that fails to complete nephrogenesis. In addition to its characteristic triphasic histology, WT can exhibit myogenic differentiation. Myogenic programming during muscle development is controlled by a PAX3 transcription factor determinant for muscle development; unexpectedly PAX3 transcriptional activity has been recently identified in the embryonic mouse kidney. These observations led us to hypothesize that PAX3 plays a role during kidney development. Furthermore, we predict that if PAX3 expression is verified during renal development, PAX3 may also be expressed in Wilms tumor with a myogenic component. / I showed that PAX3 is expressed in the metanephric mesenchyme and stromal compartment of the developing mouse kidney. In a panel of 20 Wilms tumors, PAX3 was identified in tumor samples with myogenic histopathology. Furthermore, mutations of WT1 were consistently associated with PAX3 expression in Wilms tumors and modulation of WT1 expression in HEK293 cells was inversely correlated with the level of endogenous PAX3 protein. / This work supports a novel model of normal renal development in which progenitor cells of the metanephric blastema express PAX3 when targeted toward the stromal cell fate. Suppression of PAX3 is integral to the mesenchyme-to-epithelium transition, which defines the nephrogenic cell fate and may be accomplished, in part, by WT1. Conversely, failure to suppress PAX3 may account for the myogenic phenotype in a subset of WT1-negative Wilms tumors.
|
527 |
Muscle gene transfer studies of a 27-BP segment of the troponin I fast gene IRE enhancerNowacka, Lidia. January 2009 (has links)
The fast-skeletal-muscle-fiber-specific expression of the troponin I(fast) (TnIfast) gene is driven by an Intronic Regulatory Element (IRE) located within the first intron of the gene. The IRE is a 148 bp transcriptional enhancer that contains several known and suspected cis-regulatory elements. These include the E-box, the closely-spaced MEF2 site and CACT box, the CACC site, and the CAGG element. Previous loss-of-function studies performed using the quail TnIfast IRE suggest that its activity depended on the MEF2 and CACT elements. The goal of my thesis research was to determine whether the MEF2 and CACT sites were not only necessary, but also sufficient, to support IRE activity. I prepared head-to-tail multimers of a 27-bp IRE segment that consisted largely of the near-adjacent MEF2 and CACT elements and did not contain any other known/suspected elements. These multimers were cloned upstream of a reporter gene consisting of the minimal promoter of the quail TnIfast gene linked to sequences encoding human placental alkaline phosphatase. The transcriptional capabilities of the constructs were assessed by gene transfer into the mouse soleus muscle in vivo by intramuscular injection/electroporation, and histochemical analysis of reporter enzyme plap expression including quantitative microdensitometry. I found that expression of these constructs was readily detectable and that it was markedly reduced by prior mutation of the CACT and, especially, of the MEF2 sites. These data indicate that the short DNA segment containing MEF2 and CACT elements is sufficient to drive expression in skeletal muscle and confirms the functional importance of these specific elements. / Although constructs containing the wild-type IRE 27-bp region were expressed, there was little preferential expression in fast fibers, in contrast to expression driven by the complete 148-bp IRE. Thus my results indicate that the MEF2 and CACT elements are not sufficient to drive fast fiber-type-specific expression, and suggest that additional elements outside of the 27-bp region tested are also necessary for fiber-type-specificity.
|
528 |
Understanding the basis of 5-Bromo-2'-deoxuridine teratogen specificity in organogenesis stage mouse embryosGnanabakthan, Naveen. January 2008 (has links)
5-Bromo-2'-deoxyuridine (BrdU), a thymidine analogue, is genotoxic and teratogenic. The exposure of mouse embryos to BrdU at doses that cause malformations induces oxidative stress and an embryonic stress response characterized by an increase in c-Fos dependent AP-1 DNA binding. The goal of this thesis was to test the hypothesis that development is disturbed at sites where BrdU is incorporated into DNA, triggering oxidative stress and c-Fos induction. Gestation day 9 CD-1 mice were treated with BrdU and embryos were obtained for immunolocalization of BrdU, 8-oxoguanine, a biomarker for oxidative stress, and c-Fos. BrdU incorporation into DNA was dispersed throughout the embryo. In contrast, the staining for 8-oxoguanine and c-Fos were highest in the neuroepithelium. BrdU incorporation was not affected by the pre-administration of N-acetyl-cysteine (NAC), an anti-oxidant, although both 8-oxoguanine and c-Fos staining were decreased. Thus, the response of the embryo to insult is tissue specific.
|
529 |
An investigation into the critical domains and function of XMI-ER1 during xenopus development /Teplitsky, Yoella, January 2003 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, 2004. / Bibliography: leaves 130-141.
|
530 |
Investigating TGFβ signals in cell fate specification in the early mouse embryoSenft, Anna Dorothea January 2016 (has links)
TGFβ signalling via Smad transcription factors is essential for axis patterning and subsequent cell fate specification during mammalian embryogenesis. However, the cellular and molecular mechanisms have been difficult to characterise in vivo due to early embryonic lethality of mouse mutants and redundant functional activities. Here I show that combined deletion of closely related Smad2 and Smad3 in mouse embryonic stem cells impairs induction of lineage specific gene expression during differentiation, while extra-embryonic gene expression is up-regulated. Preliminary data suggest that the underlying mechanism of this differentiation defect reflects the inability of Smad2/3<sup>-/-</sup> cells to establish lineage priming. Collectively, these findings identify novel downstream target genes controlled by Smad2/3 and an absolute requirement for Smad2/3 during embryonic differentiation. TGFβ signalling via Smad1 and Smad4 is essential for induction of the transcription factor Blimp1 required for primordial germ cell specification. The direct upstream regulators of Blimp1 are unknown, but T-box factors have recently been suggested to play a role. In a second project, I performed tissue- specific ablation of the T-box transcription factor Eomes as well as components of the TGFβ signalling pathway in either the visceral endoderm or the epiblast to examine tissue-specific functions for Blimp1 induction. I show that Eomes and Smad2 functions in the visceral endoderm as well as Eomes function in the epiblast are dispensable for Blimp1 induction, but rather are required to restrict Blimp1 induction to posterior epiblast cells. In contrast, epiblast-specific Smad4 or Smad1 mutants fail to robustly induce Blimp1 in the epiblast. My preliminary analysis suggests that competence to induce primordial germ cell fate is dependent on the interplay of Smad2/Eomes functions in the visceral endoderm and Smad1/4 functions in the epiblast. Collectively, this thesis provides insight into the transition from pluripotency to cell fate specification in the mammalian embryo that is impossible to obtain from human embryos in vivo.
|
Page generated in 0.0287 seconds