• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computation And Analysis Of Spectra Of Large Undirected Networks

Erdem, Ozge 01 June 2010 (has links) (PDF)
Many interacting complex systems in biology, in physics, in technology and social systems, can be represented in a form of large networks. These large networks are mathematically represented by graphs. A graph is represented usually by the adjacency or the Laplacian matrix. Important features of the underlying structure and dynamics of them can be extracted from the analysis of the spectrum of the graphs. Spectral analysis of the so called normalized Laplacian of large networks became popular in the recent years. The Laplacian matrices of the empirical networks are in form of unstructured large sparse matrices. The aim of this thesis is the comparison of different eigenvalue solvers for large sparse symmetric matrices which arise from the graph theoretical epresentation of undirected networks. The spectrum of the normalized Laplacian is in the interval [0 2] and the multiplicity of the eigenvalue 1 plays a particularly important role for the network analysis. Moreover, the spectral analysis of protein-protein interaction networks has revealed that these networks have a different distribution type than other model networks such as scale free networks. In this respect, the eigenvalue solvers implementing the well-known implicitly restarted Arnoldi method, Lanczos method, Krylov-Schur and Jacobi Davidson methods are investigated. They exist as MATLAB routines and are included in some freely available packages. The performances of different eigenvalue solvers PEIG, AHBEIGS, IRBLEIGS, EIGIFP, LANEIG, JDQR, JDCG in MATLAB and the library SLEPc in C++ were tested for matrices of size between 100-13000 and are compared in terms of accuracy and computing time. The accuracy of the eigenvalue solvers are validated for the Paley graphs with known eigenvalues and are compared for large empirical networks using the residual plots and spectral density plots are computed.
2

Computation And Analysis Of Spectra Of Large Networks With Directed Graphs

Sariaydin, Ayse 01 June 2010 (has links) (PDF)
Analysis of large networks in biology, science, technology and social systems have become very popular recently. These networks are mathematically represented as graphs. The task is then to extract relevant qualitative information about the empirical networks from the analysis of these graphs. It was found that a graph can be conveniently represented by the spectrum of a suitable difference operator, the normalized graph Laplacian, which underlies diffusions and random walks on graphs. When applied to large networks, this requires computation of the spectrum of large matrices. The normalized Laplacian matrices representing large networks are usually sparse and unstructured. The thesis consists in a systematic evaluation of the available eigenvalue solvers for nonsymmetric large normalized Laplacian matrices describing directed graphs of empirical networks. The methods include several Krylov subspace algorithms like implicitly restarted Arnoldi method, Krylov-Schur method and Jacobi-Davidson methods which are freely available as standard packages written in MATLAB or SLEPc, in the library written C++. The normalized graph Laplacian as employed here is normalized such that its spectrum is confined to the range [0, 2]. The eigenvalue distribution plays an important role in network analysis. The numerical task is then to determine the whole spectrum with appropriate eigenvalue solvers. A comparison of the existing eigenvalue solvers is done with Paley digraphs with known eigenvalues and for citation networks in sizes 400, 1100 and 4500 by computing the residuals.
3

Exploring patterns of empirical networks / Utforska mönster av empiriska nätverk

Rocha, Luis E C January 2011 (has links)
We are constantly struggling to understand how nature works, trying to identify recurrent events and looking for analogies and relations between objects or individuals. Knowing patterns of behavior is powerful and fundamental for survival of any species. In this thesis, datasets of diverse systems related to transportation, economics, sexual and social contacts, are characterized by using the formalisms of time series and network theory. Part of the results consists on the collection and analyzes of original network data, the rest focuses on the simulation of dynamical processes on these networks and to study how they are affected by the particular structures. The majority of the thesis is about temporal networks, i.e. networks whose structure changes in time. The new temporal dimension reveals structural dynamical properties that help to understand the feedback mechanisms responsible to make the network structure to adapt and to understand the emergence and inhibition of diverse phenomena in dynamic systems, as epidemics in sexual and contact networks. / Vi är ständigt kämpar för att förstå hur naturen fungerar, försöker identifier återkommande evenemang och söker analogier och relationer mellan objekt eller individer. Veta beteendemönster är kraftfull och grundläggande för överlevnad av arter. I denna avhandling, dataset av olika system i samband med transporter är ekonomi, sexuella och sociala kontakter, som kännetecknas av att använda formalismer av tidsserier och nätverk teori. En del av resultatet utgörs av insamling och analys av ursprungliga nätdata, fokuserar resten på simulering av dynamiska processer i dessa nätverk och att studera hur de påverkas av de särskilda strukturer. Huvuddelen av avhandlingen handlar om tidsmässiga nät, i.e. nät vars struktur förändringar i tid. Den nya tidsdimensionen avslöjar strukturella dynamiska egenskaper som hjälper till att förstå den feedback mekanismer som ansvarar för att göra nätverksstruktur att anpassa sig och förstå uppkomsten och hämning av olika företeelser i dynamiska system, epidemier i sexuella och kontaktnät. / Constantemente nos esforçamos para entender como a natureza funciona, tentando identificar eventos recorrentes e procurando por analogias e relações entre objetos ou indivíduos. Conhecer padrões de comportamento é algo poderoso e fundamental para a sobrevivência de qualquer espécie. Nesta tese, dados de sistemas diversos, relacionados a transporte, economia, contatos sexuais e sociais, são caracterizados usando o formalismo de séries temporais e teoria de redes. Uma parte dos resultados consiste na coleta e análise de dados de redes originais, a outra parte concentra-se na simulação de processos dinâmicos nessas redes e no estudo de como esses processos são afetados por determinadas estruturas. A maior parte da tese é sobre redes temporais, ou seja, redes cuja estrutura varia no tempo. A nova dimensão temporal revela propriedades estruturais dinâmicas que contribuem para o entendimento dos mecanismos de resposta responsáveis pela adaptação da rede, e para o entendimento da emergência e inibição de fenômenos diversos em sistemas dinâmicos, como epidemias em redes sexuais e de contato pessoal.

Page generated in 0.0604 seconds