• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 198
  • 146
  • 39
  • 24
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 5
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 519
  • 107
  • 75
  • 49
  • 39
  • 37
  • 36
  • 35
  • 33
  • 33
  • 30
  • 28
  • 28
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

A quantitative image evaluation study of a concurrent photon amplification treated emulsion

Kern, Konrad E. January 1984 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 1984. / "Report no. AFIT/CI/NR 85-8T." "Report date July 1984." Includes bibliographical references (p. 55-56).
62

Distribution of oil sands formation water in bitumen froth

Jia, Bei. January 2010 (has links)
Thesis (M. Sc.)--University of Alberta, 2010. / Title from pdf file main screen (viewed on June 30, 2010). A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science, Department of Chemical and Materials Engineering, University of Alberta. Includes bibliographical references.
63

Nuclear resonance in dispersed systems

Yang, Koahsiung, January 1977 (has links)
Thesis--University of Florida. / Description based on print version record. Typescript. Vita. Includes bibliographical references (leaves 164-166).
64

Slanted layer photonic structures in silver-halide gelatin emulsions /

Yau, Suet Man. January 2006 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2006. / Includes bibliographical references (leaves 58-60). Also available in electronic version.
65

Lipid based drug delivery systems for parenteral delivery of proteins /

Jørgensen, Lene. January 2004 (has links)
Ph.D.
66

Design and development of a novel high performance emulsion explosive using nanoparticles

Tshilumbu, Nsenda Ngenda January 2014 (has links)
Thesis submitted in fulfilment of the requirements for the degree Doctor of Technology: Chemical Engineering in the Faculty of Engineering at the Cape Peninsula University of Technology 2014 / This study investigated water-in-oil (W/O) super-concentrated emulsions used as pumpable explosives. The aqueous phase of the emulsions is a supersaturated nitrate salt solution (at room temperature), with a volume fraction of approximately 0.9. Instability of such emulsions arises either from crystallization of the dispersed phase in the system during ageing or under high shear conditions. Here, we report an alternative approach to stabilize this highly concentrated W/O emulsion by adding colloidal particles in combination with short amphiphilic molecules. Thus, the primary goal of this research concerned a phenomenological study of the dependence of surfactant-to-particle ratio as well as the particle hydrophobicity index on stability under high shear in the emulsification process, rheological properties and stability against initiation of crystallization of an internal phase both with ageing and under high shear with a view to optimize the time to the start of crystallization of the emulsion both with ageing and under high shear; to elucidate the mechanism of initiation of crystallization of an internal phase (homogeneous or heterogeneous) and shed light in the stabilization mechanism of the emulsion; to determine how the emulsion formulation content affect pumping characteristics as measured by characteristic rheological parameters. A series of five fumed silica nanoparticles, each with a different hydrophobicity index (HI) in the range of 0.60 – 3, were used in the form of single types of particles as well as binary mixtures. These particles were combined with a low molecular weight conventional surfactant, Sorbitan MonoOleate (SMO), into the oil phase prior to emulsification. It has been found that regardless of the particle hydrophobicity, fumed nanosilica alone cannot form highly concentrated W/O emulsion up to 90 vol%. Moreover, Pickering emulsions are unstable under shear conditions and thus it is difficult to make highly concentrated W/O pumpable emulsion explosives using only fumed nanosilica. The correlation between the refinement time and SMO-to-particle ratio showed a deflection point/transitional point in the stabilization mechanism. Below the transitional point the silica content dominates over SMO. Conversely, above the transitional point the particles have little effect and the SMO dominates. A thermodynamic consideration revealed that in this region only SMO is likely to adsorb at the W/O interface and controls the emulsifying process. As with refinement time, the correlation between the shear modulus and SMO/particle ratio shows a deflection /transitional point which, as before, mark the transition point between regions of particle or SMO domination. Interestingly, it was found that for each HI, the initiation of crystallization is the most delayed, both on shelf life and under high shear, when the emulsion is prepared with an SMO-to-particle ratio equaling exactly the value at this transitional point. Moreover, the research demonstrated that a drastic change in mechanism of initiation of crystallization of the dispersed droplets occurs at the transitional point. Homogeneous nucleation within the droplets is the dominating mechanism of initiation of crystallization of an internal phase for SMO/particle ratios below and at the transitional point. In this case, the relationship between the zero modulus of particle dispersions in oil and the SMO-to-particle ratio demonstrated that the most stable emulsions are formed from the most unstable dispersions, indicating that less repulsion between particles is required to delay the onset of crystallization. This was further corroborated by the linear correlation between the time to the onset of crystallization and the shear modulus of the emulsion. On the contrary, it was found that for SMO/particle ratios above the critical point, heterogeneous nucleation catalyzed at the surface of droplets is the dominating mechanism of initiation of crystallization of nitrate salts in the super-cooled droplets This was found to be consistent with SMO-only system. That is the change in the mechanism of initiation of crystallization originates from a drastic change in the emulsion structure due to excess surfactant was highlighted by the drastic change in the linear correlation between the time to the start of crystallization and the strength of the emulsion structure as measured by the shear modulus. The optimum time to the start of crystallization (onset of crystallization associated with optimum SMO-to-particle ratio) is sensitive to the particle HI; increasing with increase of particle HI. A general correlation between the particle HI and optimum time to the onset of crystallization has been identified and formulated for the whole family of single types and mixtures of fumed nanosilica used in this study.
67

Time effects in evolution of structure and rheology of highly concentrated emulsions

Kharatiyan, Ellina January 2005 (has links)
Thesis (DTech (Chemical Engineering))--Cape Peninsula University of Technology, 2005. / The subject of this study is highly concentrated emulsion explosive (HCEE). These emulsions are dispersions of an aqueous phase (up to 90 v-%) in an oil phase. The dispersed droplets consist of an aqueous solution of nitrate salts, which is supersaturated at room temperature, comprising less than 20% of water by mass. Compounds of this kind are thermodynamically unstable and their instability is related to the coarsening of emulsion (coalescence) and phase transition (crystallization) of dispersed phase. However it is demonstrated that the dominating mechanism is slow crystallization inside the super-cooled droplets. The main goal of this thesis is a phenomenological study of the dependence of structural parameters, such as droplet size and volume fraction, as well as the ageing processes, on the rheological properties of these emulsions. The results of the measurements include the flow and viscoelastic properties of the materials. The rheological parameters are correlated with the kinetics of structural changes during ageing, as a function of emulsion formulation. The emulsions under study are non-Newtonian liquids. Experiments in shear rate sweep mode demonstrate that the upward and downward branches of the flow curves coincide above some specific shear rate value. The upward experiments show the existence of a low shear Newtonian asymptote, while the effect of yielding is observed in the downward curve. Wall slip is investigated and shown to be negligible.
68

Drop formation and rupture in shearing during processing of highly concentrated emulsions

Mudeme, Sipho January 2009 (has links)
Thesis (MTech (Chemical Engineering))--Cape Peninsula University of Technology, 2009. / The purpose of emulsification process is to create numerous small droplets from a large and homogenous oil phase. The emulsion used for this study is new thermodynamically unstable multi-component water-in-oil (w/o) explosive type with an internal phase ratio of approximately 94% (wt), i.e. far beyond the close packing limit of spherical droplets of 74%. However, little work has been done for this system, pertaining to the literature explaining what physical phenomena plays a major role in the process of drop formation during highly concentrated emulsion (HGE) manufacturing. This thesis is devoted to develop an understanding of what parameters control drop formation and rupture during processing of highly concentrated emulsions. The material used for the study consisted of three Pibsa derivatives (MEA, IMIDE and UREA), one mixture (MEA/SMO, 10:1) and SMO. Two concentrations were used namely 8% and 14% and the two fuel phase material were Mosspar-H and Shell sol. The Pibsa IMIDE was carried out in both oil phases. To carry out the study, the Hobart N50 mixer coupled with a power and harmonic analyser to record power as a function of time was used to manufacture all samples for the study.
69

Encapsulation of magnetosomes in lipid vesicles

Liu, Shuk Yi 01 January 2004 (has links)
No description available.
70

Investigation of mesonic interaction processes in nuclear emulsions

Goodhead, Dudley T. January 1965 (has links)
No description available.

Page generated in 0.0514 seconds