• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 17
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 137
  • 29
  • 27
  • 19
  • 19
  • 17
  • 15
  • 15
  • 15
  • 15
  • 14
  • 14
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Mechanisms of Native Shrub Encroachment on a Virginia Barrier Island

Thompson, Joseph 01 January 2016 (has links)
Species composition, temperature, soil nutrients, and leaf area index (LAI) were recorded across three encroaching Morella cerifera thicket edges and three free- standing shrubs on Hog Island, Virginia to characterize the effect of shrub thickets on the plant community and microclimate. Electron transport rate (ETR) was taken on shrub leaves to determine if microclimate benefits M. cerifera physiology. Species richness was lowest inside shrub thickets. Soil water content and LAI were higher in shrub thickets compared to grassland. Soil organic matter, N, and C were higher inside shrub thickets. Summer and fall maximum temperatures were more moderate in shrub thickets and at free-standing shrubs. Fall and winter minimum temperatures were higher inside shrub thickets. ETR was higher at the free-standing shrubs compared to the thicket edge. Morella cerifera impacts microclimate characteristics and species composition immediately upon encroachment. Improved shrub physiology was neither supported nor rejected by the research presented here.
22

Fire - Herbivory Interactions in an East African Savanna: Effects on Acacia Drepanolobium Trees

LaMalfa, Eric M. 01 May 2019 (has links)
Globally, changes in plant community structure have occurred in ecosystems where humans have altered natural disturbance regimes. Many plants have adaptive life histories and morphological traits that have coevolved with fire and herbivory, which allows them to thrive despite repeated tissue losses. Therefore, altering the type, frequency, or severity of disturbance affects individual plant growth and competition among species. When these changes benefit or disadvantage different plant functional groups (i.e., grasses, shrubs, trees) it alters ecosystem structure and function. Understanding and predicting these vegetation changes, is critical for conservation and management of biodiversity, wildlife habitat, livestock forage, and water. Savannas are characterized by the codominance of grasses and trees, but the proportion of tree cover responds dynamically to changes in precipitation, fire, and herbivory. These factors often cause a ‘demographic bottleneck,’ which delays transitions from sapling size (1 m). In this dissertation, I investigated several fire × herbivory interactions to gain a mechanistic understanding of sapling recruitment processes that ultimately affect savanna structure. I made use of a long-term experiment that used semi-permeable fencing to manipulate presence and absence of different types of herbivores, to explore how fire and different combinations of domestic cattle, meso-wildlife, and megaherbivores (elephant and giraffe) affect sapling recruitment. First, I found clear evidence that a wide range of tree height classes resprout after being top-killed by fire, but they were all subsequently kept short by meso-wildlife browsing. Elephants played a key role in suppressing the largest resprouts after fire possibly because fire had reduced the presence of ant mutualists that defend the trees. Second, I found that in the absence of fire, cattle and wildlife indirectly affected saplings by altering competition with neighboring vegetation. Saplings competed with grass and trees during above-average rainfall years. Bare ground—a condition often caused by overgrazing—was positively associated with sapling growth. The highest sapling growth, however, occurred where large neighbor trees were absent, a condition maintained primarily by elephants browsing and damaging large neighbor trees. Finally, I found that saplings conditioned by pre-fire wildlife “browsing legacies” had high tolerance to combined fire and wildlife browsing. These results help explain how saplings tolerate repeated tissue loss to disturbance. Understanding how interactions between fire and herbivory affect sapling recruitment will help managers effectively use natural disturbance processes to manage savanna structure and function.
23

The control of Stoebe vulgaris encroachment in the Hartbeesfontein area of the North West Province / J.P. Wepener

Wepener, Jean-Pierre January 2007 (has links)
Thesis (M. Environmental Science)--North-West University, Potchefstroom Campus, 2008.
24

The impact of overgrazing on reptile diversity and population dynamics of Pedioplanis l. lineoocellata in the southern Kalahari

Wasiolka, Bernd January 2007 (has links)
Die Vegetationskomposition und –struktur, beispielsweise die unterschiedliche Architektur von Bäumen, Sträuchern, Gräsern und Kräutern, bietet ein großes Spektrum an Habitaten und Nischen, die wiederum eine hohe Tierdiversität in den Savannensystemen des südlichen Afrikas ermöglichen. Dieses Ökosystem wurde jedoch über Jahrzehnte weltweit durch intensive anthropogene Landnutzung (z.B. Viehwirtschaft) nachhaltig verändert. Dabei wurden die Zusammensetzung, Diversität und Struktur der Vegetation stark verändert. Überweidung in Savannensystemen führt zu einer Degradation des Habitates einhergehend mit dem Verlust von perennierenden Gräsern und krautiger Vegetation. Dies führt zu einem Anstieg an vegetationsfreien Bodenflächen. Beides, sowohl der Verlust an perennierenden Gräsern und krautiger Vegetation sowie der Anstieg an vegetationsfreien Flächen führt zu verbesserten Etablierungsbedingungen für Sträucher (z.B. Rhigozum trichotomum, Acacia mellifera) und auf lange Sicht zu stark verbuschten Flächen. Die Tierdiversität in Savannen ist hiervon entscheidend beeinflusst. Mit sinkender struktureller Diversität verringert sich auch die Tierdiversität. Während der Einfluss von Überweidung auf die Vegetation relativ gut untersucht ist sind Informationen über den Einfluss von Überweidung auf die Tierdiversität, speziell für Reptilien, eher spärlich vorhanden. Zusätzlich ist sehr wenig bekannt zum Einfluss auf die Populationsdynamik (z.B. Verhaltensanpassungen, Raumnutzung, Überlebensrate, Sterberate) einzelner Reptilienarten. Ziel meiner Doktorarbeit ist es den Einfluss von Überweidung durch kommerzielle Farmnutzung auf die Reptiliengemeinschaft und auf verschiedene Aspekte der Populationsdynamik der Echse Pedioplanis lineoocellata lineoocellata zu untersuchen. Hinsichtlich bestimmter Naturschutzmaßnahmen ist es einerseits wichtig zu verstehen welchen Auswirkungen Überweidung auf die gesamte Reptiliengemeinschaft hat. Und zum anderen wie entscheidende Faktoren der Populationsdynamik beeinflusst werden. Beides führt zu einem besseren Verständnis der Reaktion von Reptilien auf Habitatdegradation zu erlangen. Die Ergebnisse meiner Doktorarbeit zeigen eindeutig einen negativen Einfluss der Überweidung und der daraus resultierende Habitatdegradation auf (1) die gesamte Reptiliengemeinschaft und (2) auf einzelne Aspekte der Populationsdynamik von P. lineoocellata. Im Teil 1 wird die signifikante Reduzierung der Reptiliendiversität und Abundanz in degradierten Habitaten beschrieben. Im zweiten Teil wird gezeigt, dass P. lineoocellata das Verhalten an die verschlechterten Lebensbedingungen anpassen kann. Die Art bewegt sich sowohl häufiger als auch über einen längeren Zeitraum und legt dabei größere Distanzen zurück. Zusätzlich vergrößerte die Art ihr Revier (home range) (Teil 3). Im abschließenden Teil wird der negative Einfluss von Überweidung auf die Populationsdynamik von P. lineoocellata beschrieben: In degradierten Habitaten nimmt die Populationsgröße von adulten und juvenilen Echsen ab, die Überlebens- und Geburtenrate sinken, währen zusätzlich das Prädationsrisiko ansteigt. Verantwortlich hierfür ist zum einen die ebenfalls reduzierte Nahrungsverfügbarkeit (Arthropoden) auf degradierten Flächen. Dies hat zur Folge, dass die Populationsgröße abnimmt und die Fitness der Individuen verringert wird, welches sich durch eine Reduzierung der Überlebens- und Geburtenrate bemerkbar macht. Und zum anderen ist es die Reduzierung der Vegetationsbedeckung und der Rückgang an perennierenden Gräsern welche sich negativ auswirken. Als Konsequenz hiervon gehen Nischen und Mikrohabitate verloren und die Möglichkeiten der Reptilien zur Thermoregulation sind verringert. Des Weiteren hat dieser Verlust an perennierender Grasbedeckung auch ein erhöhtes Prädationsrisikos zur Folge. Zusammenfassend lässt sich sagen, dass nicht nur Bäume und Sträucher, wie in anderen Studien gezeigt, eine bedeutende Rolle für die Diversität spielen, sondern auch das perennierende Gras eine wichtige Rolle für die Faunendiversität spielt. Weiterhin zeigte sich, dass Habitatdegradation nicht nur die Population als gesamtes beeinflusst, sondern auch das Verhalten und Populationsparameter einzelner Arten. Des Weiteren ist es Reptilien möglich durch Verhaltensflexibilität auf verschlechterte Umweltbedingen zu reagieren. / In semi-arid savannah ecosystems, the vegetation structure and composition, i.e. the architecture of trees, shrubs, grass tussocks and herbaceous plants, offer a great variety of habitats and niches to sustain animal diversity. In the last decades intensive human land use practises like livestock farming have altered the vegetation in savannah ecosystems worldwide. Extensive grazing leads to a reduction of the perennial and herbaceous vegetation cover, which results in an increased availability of bare soil. Both, the missing competition with perennial grasses and the increase of bare soils favour shrub on open ground and lead to area-wide shrub encroachment. As a consequence of the altered vegetation structure and composition, the structural diversity declines. It has been shown that with decreasing structural diversity animal diversity decline across a variety of taxa. Knowledge on the effects of overgrazing on reptiles, which are an important part of the ecosystem, are missing. Furthermore, the impact of habitat degradation on factors of a species population dynamic and life history, e.g., birth rate, survival rate, predation risk, space requirements or behavioural adaptations are poorly known. Therefore, I investigated the impact of overgrazing on the reptile community in the southern Kalahari. Secondly I analysed population dynamics and the behaviour of the Spotted Sand Lizard, Pedioplanis l. lineoocellata. All four chapters clearly demonstrate that habitat degradation caused by overgrazing had a severe negative impact upon (i) the reptile community as a whole and (ii) on population parameters of Pedioplanis l. lineoocellata. Chapter one showed a significant decline of regional reptile diversity and abundance in degraded habitats. In chapter two I demonstrated that P. lineoocellata moves more frequently, spends more time moving and covers larger distances in degraded than in non-degraded habitats. In addition, home range size of the lizard species increases in degraded habitats as shown by chapter three. Finally, chapter four showed the negative impacts of overgrazing on several population parameters of P. lineoocellata. Absolute population size of adult and juvenile lizards, survival rate and birth rate are significantly lower in degraded habitats. Furthermore, the predation risk was greatly increased in degraded habitats. A combination of a variety of aspects can explain the negative impact of habitat degradation on reptiles. First, reduced prey availability negatively affects survival rate, the birth rate and overall abundance. Second, the loss of perennial plant cover leads to a loss of niches and to a reduction of opportunities to thermoregulate. Furthermore, a loss of cover and is associated with increased predation risk. A major finding of my thesis is that the lizard P. lineoocellata can alter its foraging strategy. Species that are able to adapt and change behaviour, such as P. lineoocellata can effectively buffer against changes in their environment. Furthermore, perennial grass cover can be seen as a crucial ecological component of the vegetation in the semi-arid savannah system of the southern Kalahari. If perennial grass cover is reduced to a certain degree reptile diversity will decline and most other aspects of reptile life history will be negatively influenced. Savannah systems are characterised by a mixture of trees, shrubs and perennial grasses. These three vegetation components determine the composition and structure of the vegetation and accordingly influence the faunal diversity. Trees are viewed as keystone structures and focal points of animal activity for a variety of species. Trees supply animals with shelter, shade and food and act as safe sites, nesting sites, observation posts and foraging sites. Recent research demonstrates a positive influence of shrub patches on animal diversity. Moreover, it would seem that intermediate shrub cover can also sustain viable populations in savannah landscapes as has been demonstrated for small carnivores and rodent species. The influence of perennial grasses on faunal diversity did not receive the same attention as the influence of trees and shrubs. In my thesis I didn’t explicitly measure the direct effects of perennial grasses but my results strongly imply that it has an important role. If the perennial grass cover is significantly depleted my results suggest it will negatively influence reptile diversity and abundance and on several populations parameters of P. lineoocellata. Perennial grass cover is associated with the highest prey abundance, reptile diversity and reptile abundance. It provides reptiles both a refuge from predators and opportunities to optimise thermoregulation. The relevance of each of the three vegetation structural elements is different for each taxa and species. In conclusion, I can all three major vegetation structures in the savannah system are important for faunal diversity.
25

Biogeochemistry of Woody Plant Invasion: Phosphorus Cycling and Microbial Community Composition

Kantola, Ilsa Beth 2012 May 1900 (has links)
Woody plant encroachment is a globally-prevalent vegetation change phenomenon that has shifted grass-dominated ecosystems to mixed grass and woody plant matrices over the last century. In the Rio Grande Plains of Texas, the introduction of N-fixing woody legumes has increased above- and belowground primary productivity and changed the litter chemistry of the system, accelerating rates of belowground biogeochemical processes. The purpose of this study was to assess the impact of grassland to woodland transition on i) P concentrations in soil physical fractions that differ in their organic matter turnover rates, ii) P availability within the soil over the course of woody encroachment and across the landscape, and iii) microbial community composition and diversity. Soil samples were collected in remnant grasslands and four woody landscape elements (clusters, groves, drainage woodlands, and playas) along a 135-yr chronosequence of woody plant encroachment. P was fractionated by the Hedley method and P concentrations were determined by alkaline oxidation and lithium fusion coupled with ascorbic acid colorimetry. Bacterial and fungal communities were characterized by molecular methods. Whole soil P concentrations were 2-5X greater in woody landscape elements than in grasslands, and nutrient concentrations increased linearly with time following woody plant invasion in all but the slowest-cycling physical fractions. Plant-available P and organic P increased dramatically with time following encroachment. Changes in P availability were more pronounced in drainages and playas than in upland clusters and groves. Analysis of the bacterial and fungal communities demonstrated that microbial communities in grasslands differ at both phylum and genus level from the flora of the wooded landscape elements. This study demonstrates that woody encroachment strongly influences the distribution and availability of soil P and indicates that nutrient cycles in the soil are closely linked and similarly affected by increased woody plant abundance. Microbial communities under woody species differ in composition from those of the grasslands, and are likely contributing to the observed changes in nutrient availability. Since N and P are generally the most limiting nutrients in terrestrial ecosystems, increased stores of P are likely to alter rates of microbial processes, plant-microbe and plant-plant interactions, and successional dynamics in this ecosystem and similar landscapes around the world.
26

Absentee Landowners Near a Military Installation in Texas: Use, Motivation, and Emotional Tie to their Land

Dankert, Amber 1980- 14 March 2013 (has links)
The purpose of this dissertation was to examine the motivation of absentee landowners located around a military installation in Texas to maintain their land in agriculture. Urban encroachment around military installations has become problematic, primarily as a result of many years of incompatible development due to the transfer of lands from agricultural use to urban use. Maintaining the land in agriculture increases military training capabilities, thus increasing military readiness both stateside and abroad. Absentee landowners are of particular interest, since their detachment from the land could be perceived as a disinterest in what occurs there. The determination of landowner motivations may allow programs to be developed which can appeal to the landowners’ motivations and allow the landowners to maintain their land in agriculture. Four research questions sought to identify landowner motivation. The research questions targeted current land use, the phenomena motivating absentee landowners to maintain their land in agriculture, change in land use over time, and whether a landowner’s emotional tie to the land affects land management decisions. Both the intrinsic motivation of family and the extrinsic motivation of money were identified as general motivating factors, and 15 specific motivating factors were identified within the four overarching themes. Recommendations were made based on applicability of the research to the Army, cooperative extension, legislators and government agencies, financial planners, tax appraisal offices, and estate planners.
27

Hydraulics of duckbill valve jet diffusers

Karandikar, Jaydeep Sharad. January 1997 (has links)
published_or_final_version / Civil and Structural Engineering / Master / Master of Philosophy
28

Geochemical Trends Associated with the seawater-freshwater mixing zone in a Surficial Costal Aquifer, Sapelo Island, GA

Snyder, Matthew Thomas 05 1900 (has links)
No description available.
29

Population, individual and behavioural approaches to understanding the implications of habitat change for arctic ground squirrels

Wheeler, Helen Claire Unknown Date
No description available.
30

The control of Stoebe vulgaris encroachment in the Hartbeesfontein area of the North West Province / J.P. Wepener

Wepener, Jean-Pierre January 2007 (has links)
Thesis (M. Environmental Science)--North-West University, Potchefstroom Campus, 2008.

Page generated in 0.0815 seconds