• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 17
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 138
  • 29
  • 27
  • 19
  • 19
  • 17
  • 15
  • 15
  • 15
  • 15
  • 15
  • 14
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Encroachment of sandplain heathland (kwongan) by Allocasuarina huegeliana in the Western Australian wheatbelt: the role of herbivores, fire and other factors

k.maher@murdoch.edu.au, Kellie Maher January 2008 (has links)
Kwongan, also known as sandplain heathland, occurs in remnant vegetation throughout the fragmented landscape of the Western Australian wheatbelt. This vegetation community has high levels of species richness and endemism, and is of high conservation value. In many vegetation remnants in the wheatbelt the native tree species Allocasuarina huegeliana (rock sheoak) is expanding out from its normal range and encroaching into kwongan. A. huegeliana may ultimately dominate the kwongan, causing a decline in floristic diversity. Altered disturbance regimes, particularly the absence of fire and reduced or absent browsing mammal herbivores, are likely to be responsible for causing A. huegeliana encroachment. This study used experimental and observational data from patches of kwongan in three Nature Reserves in the central and southern wheatbelt to investigate the role of fire, native mammal activities and interactions between these two factors in shaping A. huegeliana woodland–kwongan community boundaries. Investigations were carried out into the characteristics of encroaching A. huegeliana populations; the environmental factors affecting the extent of encroachment, naturally recruited juveniles, and seedling emergence and establishment; historical and current abundances of native mammals; and the effects of mammal herbivores on seedling establishment during inter-fire and post-fire periods. Results from this study confirm that A. huegeliana has encroached into kwongan throughout the wheatbelt region and recruitment appears likely to continue in most areas. Few of the environmental factors measured in this study affected the extent of encroachment, the locations of naturally recruited A. huegeliana juveniles, and seedling germination and establishment. Western grey kangaroos (Macropus fuliginosus) browsed extensively on seedlings, which largely prevented them from establishing in open areas of kwongan. However, numerous A. huegeliana seedlings escaped browsing herbivores by establishing in perennial shrubs, where they appeared to be tolerant of increased levels of inter-specific competition. There was no native mammal common to all three Reserves that declined around the time that A. huegeliana encroachment most likely began in the 1970s. In addition, tammar wallabies (Macropus eugenii) had little effect even where their densities were high. It is therefore unlikely that the decline of an individual mammal species initiated encroachment. A. huegeliana encroachment appears to be driven by increased propagule pressure, which is in turn caused by increased inter-fire intervals. Long periods of time without fire have enabled fire-sensitive A. huegeliana trees to produce increasing quantities of seed that are continuously released into kwongan. A range of other factors may interact synergistically with this process to affect encroachment and these are also discussed. This study considered the implications of these findings for management of remnant vegetation in fragmented landscapes, particularly kwongan in the Western Australian wheatbelt, and areas for further research are suggested.
52

Effects of burning and thinning on species composition and forage production in British Columbia grasslands

Ducherer, Kim Lannette 05 January 2006
The structural integrity of fire-dependent ecosystems, such as ponderosa pine (<i>Pinus ponderosa </i> Dougl.) and Interior Douglas-fir (<i>Pseudotsuga menziesii </i> (Mirb.) Franco) biogeoclimatic zones in Interior British Columbia (BC) is changing. The problems within these ecosystems include decreased rangeland area, reduced carrying capacity and loss of biodiversity due to tree encroachment and forest ingrowth caused mainly by fire suppression. The goal of this study was to determine the effect of burning and thinning on understory vegetation of grassland and forested sites. The burning experiment took place at Dew Drop (Tranquille Ecological Reserve) located 20 km northwest of Kamloops, BC. Thinning was done at two upper grassland sites near Cache Creek, BC; Coal Mine Pasture and Gladys Lake Pasture. Species evenness and values of the Shannon-Weiner Diversity Index (H) were reduced (13 and 27%, respectively) within three years following burning (P = 0.014 and P = 0.038, respectively). Burning reduced canopy cover of shrubs on grassland sites (P = 0.005) and it reduced graminoid cover on forest sites (P = 0.014) immediately after the treatment (1999) but both functional groups had recovered by 2002. Litter depth and total canopy cover of plants were reduced in grasslands and forests immediately following burning (1999) but litter depth and canopy cover had recovered by 2002. Litter cover and litter depth beneath the tree canopy were reduced by burning (P = 0.037 and P = 0.009, respectively). Trends in the data indicate forb standing crop increased and total understory standing crop increased following burning in the grassland compared to the control. Graminoid standing crop was reduced 47% by burning in the forests (P = 0.049). Thinning reduced species richness in the first (P = 0.033) and fourth (P = 0.030) years, and H in the first year (P = 0.037) following the thinning at Coal Mine Pasture. Trends in the data suggest understory standing crop increased at Coal Mine and Gladys Lake Pastures following thinning. At both locations, thinning reduced litter depth. Therefore, burning and thinning kills trees, reduces fuel loads, and increases standing crop of the understory.
53

Simulated Shrub Encroachment Impacts Function of Arctic Spider Communities

Legault, Geoffrey 14 December 2011 (has links)
The projected increase of shrubs across the Arctic is expected to alter patterns of snow cover, which may affect the phenology and survival of arthropods such as spiders. In this study, we simulated shrub encroachment on a series of tundra plots and examined the effects on the spider assemblages during the following growing season. Our simulated shrub treatment did not affect the abundance or composition of spider communities over the season; however, adults from the dominant genus Pardosa (Lycosidae) had significantly higher body mass on treatment plots. This difference in mass was observed following snow melt and persisted until halfway through the growing season. Given the importance of spiders as arthropod predators and as food sources for breeding birds, such a change in summer body mass could represent a shift in spiders’ functional contributions to Arctic ecosystems.
54

Simulated Shrub Encroachment Impacts Function of Arctic Spider Communities

Legault, Geoffrey 14 December 2011 (has links)
The projected increase of shrubs across the Arctic is expected to alter patterns of snow cover, which may affect the phenology and survival of arthropods such as spiders. In this study, we simulated shrub encroachment on a series of tundra plots and examined the effects on the spider assemblages during the following growing season. Our simulated shrub treatment did not affect the abundance or composition of spider communities over the season; however, adults from the dominant genus Pardosa (Lycosidae) had significantly higher body mass on treatment plots. This difference in mass was observed following snow melt and persisted until halfway through the growing season. Given the importance of spiders as arthropod predators and as food sources for breeding birds, such a change in summer body mass could represent a shift in spiders’ functional contributions to Arctic ecosystems.
55

Minor field study on traffic safety in Ghana : Pedestrian and cyclist facilities and access in central Accra

Eriksson, Göran, Davidsson, Tobias, Lundgren, Pauline January 2009 (has links)
This study is an analysis of the traffic situation for pedestrians and bicyclist, unprotected road users, in Accra’s Central Business District. A Swedish method, Calm streets, is used to identify conflicts in the mixed traffic situation. The findings reveal a large amount of conflicts between unprotected road users and motor vehicles. These conflicts cause congestions which have negative implications on the environment, health and economy. In addition an assessment of the quality of and access to pedestrian and bicycle facilities were conducted. This assessment indicates that the quality and access to the facilities are in general low, especially for the disabled, elderly and children. A larger Traffic Network Analysis and a Cost Benefit Analysis are needed to address these problems for stakeholders and decision makers.
56

Effects of burning and thinning on species composition and forage production in British Columbia grasslands

Ducherer, Kim Lannette 05 January 2006 (has links)
The structural integrity of fire-dependent ecosystems, such as ponderosa pine (<i>Pinus ponderosa </i> Dougl.) and Interior Douglas-fir (<i>Pseudotsuga menziesii </i> (Mirb.) Franco) biogeoclimatic zones in Interior British Columbia (BC) is changing. The problems within these ecosystems include decreased rangeland area, reduced carrying capacity and loss of biodiversity due to tree encroachment and forest ingrowth caused mainly by fire suppression. The goal of this study was to determine the effect of burning and thinning on understory vegetation of grassland and forested sites. The burning experiment took place at Dew Drop (Tranquille Ecological Reserve) located 20 km northwest of Kamloops, BC. Thinning was done at two upper grassland sites near Cache Creek, BC; Coal Mine Pasture and Gladys Lake Pasture. Species evenness and values of the Shannon-Weiner Diversity Index (H) were reduced (13 and 27%, respectively) within three years following burning (P = 0.014 and P = 0.038, respectively). Burning reduced canopy cover of shrubs on grassland sites (P = 0.005) and it reduced graminoid cover on forest sites (P = 0.014) immediately after the treatment (1999) but both functional groups had recovered by 2002. Litter depth and total canopy cover of plants were reduced in grasslands and forests immediately following burning (1999) but litter depth and canopy cover had recovered by 2002. Litter cover and litter depth beneath the tree canopy were reduced by burning (P = 0.037 and P = 0.009, respectively). Trends in the data indicate forb standing crop increased and total understory standing crop increased following burning in the grassland compared to the control. Graminoid standing crop was reduced 47% by burning in the forests (P = 0.049). Thinning reduced species richness in the first (P = 0.033) and fourth (P = 0.030) years, and H in the first year (P = 0.037) following the thinning at Coal Mine Pasture. Trends in the data suggest understory standing crop increased at Coal Mine and Gladys Lake Pastures following thinning. At both locations, thinning reduced litter depth. Therefore, burning and thinning kills trees, reduces fuel loads, and increases standing crop of the understory.
57

Ecological interactions influencing Avicennia germinans propagule dispersal and seedling establishment at mangrove-saltmarsh boundaries

Peterson, Jennifer Mcclain 01 January 2013 (has links)
Mangroves and saltmarshes are ecologically important coastal ecosystems; unfortunately, these low-lying coastal ecosystems are vulnerable to global climate change. As sea-levels rise, mangroves are expected to shift their distribution landward towards higher elevation sites that are occupied by other plants, including saltmarsh taxa. Therefore, mangrove recruits at the leading edge of expansion may interact with diverse assemblages of saltmarsh plants, and these interactions could influence the success of mangrove encroachment into higher tidal-elevation areas. The purpose of the research presented here was to investigate empirically the ecological interactions that may influence the recruitment of the black mangrove, Avicennia germinans, into saltmarsh habitats. Saltmarsh plants frequently occurred at the landward boundary of mangrove forests at two sites selected for field studies along the west coast of Florida: Cannon Island and Upper Tampa Bay Park. On Cannon Island, two different field tests investigated mangrove propagule entrapment and dispersal within saltmarsh vegetation. In the first experiment, the entrapment of mangrove propagules within saltmarsh plants, exhibiting different growth forms, was examined during seasonal high tide events. Natural polyculture plots retained a mean (±;SE) 59.3% (±;11.0) of emplaced propagules. Monocultures varied in their propagule retention capacities with plots of S. virginicus retaining on average 65.7% (±;11.5) of transplanted propagules compared to 7.2% (±;1.8) by B. maritima and 5.0% (±;1.9) by S. portulacastrum. Monocultures of the salt marsh grass, Sporobolus virginicus, and natural saltmarsh polycultures containing S. virginicus retained significantly more propagules than either of two succulent plants (i.e., Batis maritima and Sesuvium portulacastrum). Using digital images, saltmarsh plant structure was quantified; the number of entrapped mangrove propagules displayed a significant and positive correlation (r2 = 0.6253, p = 0.00001) with the amount of structure provided by saltmarsh plants. Therefore, the first field study identified structural and functional differences between saltmarsh plants. A second field study employed marked propagules in order to further examine the dispersal patterns of propagules at saltmarsh boundaries comprised of plants with different growth forms (i.e., grass vs. succulent) during seasonal high tides. Saltmarsh plant boundaries erected by taxa with distinct growth forms differentially influenced the proportion of propagules that dispersed seaward and the distance propagules moved seaward. In fact, nearly twice as many propagules dispersed seaward at boundaries erected by succulent plants compared to boundaries composed of grass. The results of this field study support my previous findings that propagule dispersal is comparatively lower in saltmarsh grass than in succulent saltmarsh plants. The findings from these two field studies suggest that the permeability of boundaries formed by saltmarsh plants may modulate landward dispersal of A. germinans propagules. The final field study was conducted at Upper Tampa Bay Park, where a second species of saltmarsh grass, Monanthochloe littoralis, co-occurred with the grass, S. virginicus, and succulent saltmarsh plants to form a mosaic landscape of saltmarsh plant patches. Patches were weeded to create 3 saltmarsh treatments: 1) M. littoralis monoculture; 2) S. virginicus monoculture; and 3) polycultures containing both grasses and at least one other saltmarsh taxa. Propagules of A. germinans were emplaced into saltmarsh patches and followed for 11 weeks. On the last sampling date, the greatest number of A. germinans (n = 51) had successfully established as seedlings within the M. littoralis monoculture plots. In contrast, only 20 (22% of the propagules initially emplaced) A. germinans seedlings established in S. virginicus monoculture plots. These findings suggest that among grass taxa, species identity influences mangrove establishment success, which builds upon our previous findings that demonstrated that saltmarsh growth form (i.e., grass vs. succulent) influenced mangrove propagule dispersal. Combined the findings from these field studies indicate that interactions among the early life history stages of black mangroves and neighboring plants influence mangrove recruitment. Specifically, these field studies provide empirical evidence that the species composition of saltmarsh plants influences mangrove propagule dispersal and seedling establishment. The work presented here has implications for understanding the suite of ecological interactions that may influence mangrove encroachment into saltmarsh habitats at higher tidal elevations as sea-levels rise.
58

WELLS IMAGED ABOUT AN INTERFACE: A HELE-SHAW MODEL

Abed, Sami A. A. January 1982 (has links)
No description available.
59

TEMPERATURE AND PRECIPITATION CONTROLS OVER SOIL, LEAF AND ECOSYSTEM LEVEL CO2 FLUX ALONG A WOODY PLANT ENCROACHMENT GRADIENT

Barron-Gafford, Greg Alan January 2010 (has links)
Woody plant encroachment (WPE) into historic grasslands not only alters ecosystem structure but also yields a mosaic of vegetative growth-forms that differ in their inherent physiological capacities and physical attributes. C₃ plants tend to have a relatively broad range of temperature function but at the expensive of a lower optimum rate of photosynthesis. In contrast, C₄ grasses have a greater capacity for maximum uptake but across a relatively narrow range of temperatures. In considering which of these functional groups will outcompete the other within these regions undergoing WPE, one must account not only for these leaf physiological traits, but also the growth form induced differences in rooting depth, and therefore, potential access to deeper subsurface water. Laid upon these competitive interactions is an ever-changing environment, which for the semiarid southwestern US is predicted to become progressively warmer and characterized by highly variable precipitation with longer interstorm periods. In addition to aboveground changes in CO₂ assimilation, WPE influences soil nutrient, water, and carbon cycling. The objectives of this dissertation were to quantify: (1) the influence that temperature and available soil moisture have on regulating soil respiratory efflux within the microhabitats that results from WPE to estimate the influence this vegetative change will have on ecosystem CO₂ efflux; (2) the sensitivity of CO₂ uptake within grassland and woodland ecosystems to temperature and precipitation input in an effort to characterize how WPE might influence regional carbon and water balance; and (3) the role access to stable groundwater has in regulating the temperature sensitivity of ecosystems and their component fluxes. Major findings and contributions of this research include illustrating seasonal patterns of soil respiration within the microhabitats that result from WPE, such that an analysis of the relative contributions of these different components could be made. We found that soil respiration was not only consistently greater under mesquites, but that the relative contributions of these microhabitats varied significantly throughout the year, the duration of soil respiration after each rain was habitat-specific, and that the relationship between soil respiration and temperature followed a hysteretic pattern rather than a linear function (Appendix A). We found that a woodland ecosystem demonstrated a lower temperature sensitivity than a grassland across all seasonal periods of varying soil moisture availability, and that by maintaining physiological function across a wider range of temperatures throughout periods of limited precipitation, C₃ mesquites were acquiring large amounts of carbon while C₄ grasses were limited to functioning within a narrower range of temperatures (Appendix B). Finally, we found that having a connectivity to stable groundwater decoupled leaf and ecosystem scale temperature sensitivities relative to comparable sites lacking such access. Access to groundwater not only resulted in the temperature sensitivity of a riparian shrubland being nearly half that of the upland site throughout all seasonal periods, but also actual rates of net ecosystem productivity and leaf level rates of photosynthesis being dramatically enhanced (Appendix C).
60

Woody Plant Dynamics in a Sonoran Desert Ecosystem across Scales: Remote Sensing and Field Perspectives

Browning, Dawn M. January 2008 (has links)
Historic land uses impose discernable legacy effects that may influence ecosystem function, a concern of particular importance in actively managed landscapes. In recent history (ca. 150 years) tree and shrub abundance has increased at the expense of native grasses in savannas and grasslands. The magnitude and patterns of change are spatially heterogeneous, highlighting the need for analytical approaches spanning multiple spatial scales, from individual plants to patches to landscapes. The overarching goal of this dissertation was to explore long-term dynamics associated with woody plant encroachment with aerial photography and field studies to examine cover, density, soils and land use history at the Santa Rita Experimental Range.The first study characterized patterns in woody cover change on contrasting soils over 60 years using aerial photography. Woody patch dynamics revealed encroachment and stabilization phases in woody plant proliferation. Soil properties reflected the rate at which uplands reached a dynamic equilibrium, but not the endpoint (ca. 35% cover). Fluctuations around dynamic equilibrium reflected net change in patch growth and acquiescence combined with colonization and mortality. Efforts to characterize changes in land cover will require patch-based assessments beyond coarse estimates of percent cover.The second study capitalized on historic field measurements of shrub canopies to validate estimates of shrub cover derived from the earliest aerial photography, quantified detection limitations of 1936 aerial photographs for mapping shrub cover, assessed species-specific contributions to percent cover, and translated detection limitations to proportions of velvet mesquite (Prosopis velutina var Woot.) biomass missed with 1930s aerial photography.The third study was a field-based approach investigating how livestock grazing influenced mesquite cover, density, biomass, and stand structure over 74 years. The study supplemented traditional statistical analysis of grazing effects with methods quantifying spatial autocorrelation structure of mesquite density by grazing treatment. The outcome re-affirmed the supposition that mesquite cover may be dynamically stable at ca 30%, and revealed that livestock grazing slowed the shrub encroachment process from 1932 to 2006, counter to expectation. Results indicate that shrub growth trajectories persist long-term. Overall, this work affirms the importance of land use legacies and long-term perspectives in rangeland shrub dynamics.

Page generated in 0.405 seconds