Spelling suggestions: "subject:"geomembrane"" "subject:"biomembrane""
1 |
Cloning and analysis of an <i>Aspergillus nidulans</i> Sec7 domain coding geneYang, Yi 03 September 2003 (has links)
This study aimed to identify the genetic basis of the Aspergillus nidulans hypB5 mutant phenotype. A. nidulans is a filamentous fungus that is widely used as a cell biological and molecular genetic model system. Its hyphae grow by localized polar secretion, producing tubular cells. A. nidulans hypercellular strains define five unlinked genes, hypA1-hypE2, which cause hyphal morphogenesis defects at 42°C. hypA is orthologous to Saccharomyces TRS120, which mediates Golgi transit and is widely conserved. The hypB5 restrictive phenotype resembles hypA1: wide hyphae, short basal cells and small nuclei. Like hypA1, shifting hypB5 mutants from 28°C to 42°C causes cessation of tip growth but isotropic expansion of basal cells. A hypA1, hypB5 double mutant was impaired for growth at 28°C, suggesting these genes have related roles, but neither was epistatic at 37°C so they function in different pathways. The A. nidulans pRG3-AMA1 genomic library was used to clone hypB5 complementing DNA by phenotype rescue, and subcloned to a 5 kb KpnI fragment, pYY2. pYY2 was disrupted and sequenced by Tn1000 insertional mutagenesis. The pYY2 sequence is 4975 bp and encodes a putative Sec7 domain which has 81% identity to the Saccharomyces SEC7 domain. The Sec7 domain is highly conserved from yeasts to mammals. Saccharomyces SEC7 encodes a guanine nucleotide exchange factor involved in COPI vesicle formation and Golgi biogenesis. Insertions in the pYY2 non-Sec7 domain coding region complemented hypB5 efficiently, whereas those in the Sec7 domain did not, indicating that the Sec7 domain is sufficient for function. A point mutation was found in the hypB5 strain Sec7 domain, which could explain temperature sensitivity. However, the pYY2 sequence is found on chromosome I whereas hypB maps to chromosome VII. Although the origin and functional role of the point mutation in the hypB5 strain Sec7 protein remains unresolved, it appears that pYY2 contains an extragenic suppressor. Thus hypB likely encodes an element in the COPI vesicle assembly pathway.
|
2 |
Cloning and analysis of an <i>Aspergillus nidulans</i> Sec7 domain coding geneYang, Yi 03 September 2003
This study aimed to identify the genetic basis of the Aspergillus nidulans hypB5 mutant phenotype. A. nidulans is a filamentous fungus that is widely used as a cell biological and molecular genetic model system. Its hyphae grow by localized polar secretion, producing tubular cells. A. nidulans hypercellular strains define five unlinked genes, hypA1-hypE2, which cause hyphal morphogenesis defects at 42°C. hypA is orthologous to Saccharomyces TRS120, which mediates Golgi transit and is widely conserved. The hypB5 restrictive phenotype resembles hypA1: wide hyphae, short basal cells and small nuclei. Like hypA1, shifting hypB5 mutants from 28°C to 42°C causes cessation of tip growth but isotropic expansion of basal cells. A hypA1, hypB5 double mutant was impaired for growth at 28°C, suggesting these genes have related roles, but neither was epistatic at 37°C so they function in different pathways. The A. nidulans pRG3-AMA1 genomic library was used to clone hypB5 complementing DNA by phenotype rescue, and subcloned to a 5 kb KpnI fragment, pYY2. pYY2 was disrupted and sequenced by Tn1000 insertional mutagenesis. The pYY2 sequence is 4975 bp and encodes a putative Sec7 domain which has 81% identity to the Saccharomyces SEC7 domain. The Sec7 domain is highly conserved from yeasts to mammals. Saccharomyces SEC7 encodes a guanine nucleotide exchange factor involved in COPI vesicle formation and Golgi biogenesis. Insertions in the pYY2 non-Sec7 domain coding region complemented hypB5 efficiently, whereas those in the Sec7 domain did not, indicating that the Sec7 domain is sufficient for function. A point mutation was found in the hypB5 strain Sec7 domain, which could explain temperature sensitivity. However, the pYY2 sequence is found on chromosome I whereas hypB maps to chromosome VII. Although the origin and functional role of the point mutation in the hypB5 strain Sec7 protein remains unresolved, it appears that pYY2 contains an extragenic suppressor. Thus hypB likely encodes an element in the COPI vesicle assembly pathway.
|
3 |
Targeting and function of CAH1 : Characterization of a novel protein pathway to the plant cell chloroplast / Transport och funktion av CAH1 : Karakterisering av en ny transportväg för proteiner till växtcellens kloroplastBurén, Stefan January 2010 (has links)
The chloroplast is the organelle within a plant cell where photosynthesis takes place. This organelle originates from a cyanobacterium that was engulfed by a eukaryotic cell. During the transition from endosymbiont to organelle most of the cyanobacterial genes were transferred to the nuclear genome of the host cell, resulting in a chloroplast with a much reduced genome that requires massive import of gene products (proteins) back to the organelle. The majority of these proteins are translated in the cytosol as pre-proteins containing targeting information that directs them to a translocon complex in the chloroplast envelope, the Toc-Tic system, through which these proteins are transported. We have identified a protein in the model plant Arabidopsis thaliana, CAH1, that is trafficked via the endomembrane system (ER/Golgi apparatus) to the chloroplast instead of using the Toc-Tic machinery. This transport is partly mediated by canonical vesicle trafficking elements involved in ER to Golgi transport, such as Sar1 and RabD GTPases. Analysis of point mutated variants of CAH1 showed that both N-linked glycans and an intra-molecular disulphide bridge are required for correct folding, trafficking and function of the protein. Since chloroplasts lack N-glycosylation machinery, we propose that a route for chloroplast proteins that require endomembrane-specific post-translational modifications for their functionality exists as a complement to the Toc-Tic system. We also show that mutant plants with disrupted CAH1 gene expression have reduced rates of CO2 uptake and accumulate lower amounts of starch compared to wild-type plants, indicating an important function of the CAH1 protein for the photosynthetic capacity of Arabidopsis. Further study of CAH1 will not only be important to reveal its role in photosynthesis, but characterization of this novel protein pathway to the chloroplast can also shed light on how the plant cell evolved and clarify the purpose of keeping several chloroplast import pathways working in parallel. In addition, knowledge about this pathway could increase the opportunities for using plants as bio-factories for production of recombinant glycoproteins, which make up the vast majority of the bio-pharmaceutical molecules. / Kloroplasten är den organell i växtcellen där fotosyntesen sker. Denna organell härstammar från en cyanobakterie som togs upp av en eukaryot cell. Under omvandlingen från endosymbiont till organell har de flesta av den ursprungliga cyanobakteriens gener flyttats över till växtcellens eget kärngenom, vilket resulterat i en kloroplast som endast kan producera ett fåtal av de proteiner den behöver och som istället kräver att en mängd genprodukter (proteiner) transporteras tillbaka till organellen. De flesta av dessa proteiner syntetiseras i cytosolen som polypeptider innehållande en speciell signal för kloroplasten, och tranporteras över kloroplastens dubbelmembran (envelop) med hjälp av ett specifikt importsystem (Toc-Tic). Vi har identifierat ett protein i modellväxten Arabidopsis thaliana (CAH1) som istället för att använda Toc-Tic tranporteras via det endomembrana systemet (ER/Golgi). Transporten sker delvis med hjälp av faktorer involverade i normal vesikeltransport, t.ex. Sar1 och RabD GTPaser (mellan ER och Golgi). Genom att uttycka och analysera punktmuterade varianter av CAH1 har vi kunnat visa att både sockergrupper kopplade till proteinet, samt en intern svavelbrygga, är nödvändiga för korrekt veckning, transport och funktion av proteinet. Då kloroplasten saknar eget maskineri för att koppla sådana sockergrupper till proteiner så föreslår vi att anledningen till att denna rutt existerar, som ett komplement till Toc-Tic, är för att proteiner beroende av denna typ av modifiering ska kunna finnas i kloroplasten. Vi visar också att muterade växter som inte kan uttrycka genen som kodar för CAH1 uppvisar lägre upptag av CO2, samt ackumulerar mindre stärkelse än vildtypplantor, vilket antyder att CAH1 har en viktig funktion för den fotosyntetiska förmågan hos Arabidopsis. För att kunna fastställa den exakta funktionen för CAH1 kommer ytterliga studier att vara nödvändiga. En fördjupad karaktärisering av transportvägen som CAH1 följer till kloroplasten kan dessutom ge kunskap om hur växtcellen uppkom, samt besvara varför flera importvägar arbetar till synes parallellt med varandra. Kunskap om denna transportväg kan även bidra med användbar information i försöken att nyttja växter till att uttrycka rekombinanta N-glykosylerade proteiner, t. ex. antikroppar och vacciner.
|
4 |
Implication du Glucosylceramide dans la voie sécretoire des plantes / Glucosylceramide synthesis contributes to the transport of proteins through the plant secretory pathwayMelser, Su 15 December 2009 (has links)
Le rôle des lipides comme des acteurs moléculaires de la voie sécrétoire des plantes n'est pas encore complètement élucidé. Le Glucosylceramide (GlcCer) est synthétisé par la Glucosylceramide synthase (GCS) chez les plantes et constitue un des sphingolipides complexes clé dans les membranes, mais on connaît peu les exigences cellulaires pour le GlcCer. Cette étude repose sur le blocage de la biosynthèse de GlcCer, par l'utilisation d'inhibiteurs chez le tabac et l’arabidopsis, et la production de mutants d'Arabidopsis, pour déterminer l'impact de la biosynthèse du GlcCer sur la dynamique endomembranaire des cellules végétales. Dans une approche qui inclue la biochimie des lipides, l'imagerie de cellules vivantes, des études ultrastructurales par microscopie electronique à transmission et des études sur le développement de la plante entière, nous avons acquis une meilleure compréhension de l'impact de la synthèse du GlcCer dans les cellules végétales qui peut être résumée comme suit: (1) Sur la base d’un analyse théorique et de la microscopie de cellules vivantes on a déterminé que la GCS est situé dans le Réticulum Endoplasmique (au début de la voie sécrétoire) dans les cellules végétales, (2) PDMP est un inhibiteur spécifique de GCS chez les plantes, (3) La perturbation de la biosynthèse du GlcCer par le PDMP et par un approche génétique ont montré que le GlcCer est important pour le trafic normale des protéines et pour la dynamique des endomembranes, notamment dans le maintien de la structure de l’appareil de Golgi, (4) La régulation du trafic des protéines mediée par la synthèse du GlcCer pourrait être critique dans l’etablissement et le maintien de la polarité cellulaire, tel qu’il est suggéré par des changements dans la localisation des marqueurs polaires chez l’Arabidopsis traitée avec PDMP, et (5) Un bloc dans la synthèse du GlcCer peut conduire à des défauts importants dans le développement des plantes, comme le montrent des mutants d'Arabidopsis avec une croissance anormale des racines primaires et incapables à se développer jusqu’aux étapes reproductives. Les interactions potentielles entre GlcCer et les machineries de transport sont discutés, ainsi que les mécanismes cellulaires qui sont potentiellement déclenchés dans les cellules végétales pour compenser une perturbation de la biosynthèse du GlcCer. / The role of lipids as molecular actors in protein secretion is not well understood in plants. Glucosylceramide (GlcCer) is synthesized by Glucosylceramide Synthase (GCS) in plants and constitutes a key complex sphingolipid in membranes, but little is known about the plant cellular requirements for GlcCer. This study relied upon the block of GlcCer biosynthesis, by the use of inhibitors in tobacco and Arabidopsis, and the production of Arabidopsis mutants, to determine the impact of GlcCer biosynthesis on plant cell endomembrane dynamics. In a comprehensive approach that included lipid biochemistry, live cell imaging, ultrastructural studies by Transmission Electron Microscopy, and whole plant developmental studies, we have gained a better understanding of the impact of GlcCer in plant cells that can be summarised as follows: (1) Based on theoretical analysis and live-cell microscopy the GCS is located to the Endoplasmic Reticulum (at the beginning of the secretory pathway) in plant cells, (2) PDMP is a specific inhibitor of GCS in plants, (3) Disruption of GlcCer biosynthesis using PDMP and genetic approaches showed that GlcCer is important for normal protein trafficking and endomembrane dynamics, notably in the maintenance of Golgi structure, (4) The regulation of protein trafficking by the synthesis of GlcCer could be critical in the establishment and maintenance of cell polarity, as suggested by defects in the localisation of polar markers in Arabidopsis treated with PDMP, and (5) A block in GlcCer synthesis may be conducive to severe defects in plant development, as Arabidopsis mutants showed abnormal primary root growth and inability to develop to reproductive stages. Potential interactions between GlcCer and the transport machineries are discussed, as well as cellular mechanisms that may be set off following a disruption of GlcCer biosynthesis in plant cells.
|
5 |
Evolutionary history of clathrin-mediated endocytosis and the eisosomeCibrario, Luigi January 2011 (has links)
Endocytosis is both an ancient and a diverse feature of the eukaryotic cell. Studying how it evolved can provide insight into the nature of the last common eukaryotic ancestor, and the diversification of eukaryotes into the known extant lineages. In this thesis, I present two studies on the evolution of endocytosis. In the first part of the thesis I report results from a large-scale, phylogenetic and comparative genomic study of clathrin-mediated endocytosis (CME). The CME pathway has been studied to a great level of detail in yeast to mammal model organisms. Several protein families have now been identified as part of the complex set of protein-protein and protein-lipid interactions which mediate endocytosis. To investigate how such complexity evolved, first, I defined the modular nature of the CME interactome (CME-I) by literature review, and then I carried out a systematic phylogenetic and protein domain architecture analysis of the proteins involved. These data were used to construct a model of the evolution of the CME-I network, and to map the expansion of the network's complexity to the eukaryotic tree of life. In the second part of the thesis, I present results from evolutionary and functional studies of the eisosome, a protein complex which has been proposed to regulate the spatial distribution of endocytosis in S. cerevisiae. The phylogeny of eisosomes components Pil1 and Lsp1 reported here, suggests that eisosomes are likely to have originated at the base of the fungi, and then diversified significantly via multiple gene duplications. I thus studied the localisation and function of Pil1 and Lsp1 homologues in Magnaporthe oryzae to investigate the role of eisosomes in filamentous fungi. Results suggests that eisosomes are linked with septal formation and integrity in M. oryzae, and that the septal specific Pil2 paralogue was lost in budding yeasts. Together, the data presented in this thesis describe the evolutionary history of a complex biological system, but also highlights the problem of asymmetry in the understanding of endocytic diversity in the eukaryotes.
|
6 |
Connecting Systemic RNAi to the Endomembrane System in Caenorhabditis elegansHolmgren, Benjamin T. January 2017 (has links)
RNA interference (RNAi) is a gene regulation mechanism conserved among eukaryotes. To silence gene expression, RNAi relies on a short single-stranded guide RNA to steer the RNA-induced Silencing Complex (RISC) to mRNAs with guide strand-complementary sequences. RNAi is a highly membrane-associated process. The RISC complex is likely loaded at the rough Endoplasmic Reticulum, where it can bind to and degrade mRNAs. Components of the RISC complex also colocalize to late endosomes, and the efficiency of RNAi-mediated silencing is affected by changes in late endosome to lysosome fusion. RNAi can be systemic and inherited, effecting gene silencing in distal tissues and in the offspring. In this thesis, the model organism Caenorhabditis elegans was used to identify and characterize factors connecting systemic and inherited RNAi to the endomembrane system. We identify two SNARE proteins, SEC-22 and SYX-6, that both act as negative regulators of RNAi. SNAREs are necessary for vesicle fusion. Both SEC-22 and SYX-6 localize to late endosomes, and both interact with systemic RNAi protein SID-5 in a yeast two-hybrid (Y2H) screen. We find that in addition to its function in systemic RNAi, SID-5 is required for proper maturation of late endosomes. Furthermore, we identify the putative RNA-binding protein C12D8.1 as a novel regulator of RNAi inheritance. Mutant C12D8.1 animals will have enhanced inheritance of RNAi silencing, which negatively affects the ability of the progeny to silence new targets using RNAi. Finally, we describe a novel, object-based method for estimating significance in colocalization studies. This method helped us describe and quantify spatial relations between fluorophore-labeled proteins in situations where such analyses would otherwise be impossible. In conclusion, the work presented here further elucidates the connection between cellular RNAi, the endomembrane system, and the outside world.
|
7 |
Analýza lokalizace endomembránových markerů v kortikální vrstvě rostlinných buněk a jejich interakce s komplexem Arp2/3 / Analysis of endomembrane markers in the cortical cytoplasm and their co-localization with Arp2/3 complexJelínková, Barbora January 2021 (has links)
ARP2/3 is an evolutionarily conserved heteroheptameric protein complex. Its main activity lies in the nucleation of dendritic actin filaments that are involved in membrane remodeling. ARP2/3 takes part in plasma membrane remodeling and the formation of cytoplasmic protrusions that serve in the amoeboid motion of mammalian cells and some protists and plays role in exocytosis and endocytosis of animal and yeast cells. The main objective of this work was to find a connection between the ARP2/3 complex and the regulation of the plant endomembrane system. Using TIRF microscopy we visualized the localization of the ARP2/3 complex in the cortical layer of plant cells and compared it to the localization of several endomembrane markers from the Rab family and an exocytotic marker Exo84b. In the vicinity of the plasma membrane, the ARP2/3 complex subunits localized to dynamic dots very similar to the localization of Exo84b protein. Colocalization analysis showed that a small portion of Exo84b marker and ARP2/3 complex signals colocalize and this result was seconded by the biochemical approach of coimmunoprecipitation. Key words: ARP2/3, endomembrane system, cortical layer, RabA1g, RabC1, RaD2a, Exo84b
|
8 |
Understanding endomembrane trafficking in plant cells using chemical genetics approachDiwen Wang (9022169) 10 September 2022 (has links)
<p>Like other eukaryotic cells, plant cells contain an endomembrane
system composed of compartmentalized organelles with specialized functions.
Vesicle trafficking mediates the transport of materials between different
organelles and between cells and the environment. The vesicle trafficking
process is highly dynamic and plays essential roles in maintaining cellular
homeostasis and environmental adaptation. Because of the essential roles of
vesicle trafficking in plant growth and development, genes that are involved in
vesicle trafficking often have redundant
function when they exist as a large family or cause embryonic lethality when
they exist as a signal gene or small gene family. Chemical genetics uses small
molecule inhibitors to affect protein function without interfering with plant’s
genome. Bioactive small molecules can generate a temporary perturbation of a
biological system in a reversible and dose-dependent fashion, which allow us to
observe dynamic cellular processes and discover new components in trafficking
machineries. We recently discovered two small molecules named Endosidin2 (ES2)
and Endosidin20 (ES20) that disrupt vesicle trafficking in plants. ES2 inhibits
exocytosis by targeting the EXO70A1 subunit of the exocyst complex in plant
cells. ES20 targets cellulose synthase (CESA) at the catalytic site and
inhibits the delivery of Cellulose Synthase Complex (CSC) to the plasma
membrane. This research thesis aims to characterize the specificity of ES2 on
EXO70 homologs and identify new genes that mediate CSC trafficking. Drug
Affinity Responsive Target Stability (DARTS) assay was used to test the
specificity of ES2 in targeting different EXO70s in Arabidopsis. Chemical genetic
screen for mutants that have increased sensitivity was conducted to identify
novel genes related to CSC trafficking. This project provides new insights in the
specificity of ES2 in targeting different EXO70s in plants and the regulatory
mechanisms of CSC trafficking that control plant cellulose synthesis.</p><p><br></p>
|
9 |
Cellular Mechanisms of Gravitropism in ARG1 (Altered Response to Gravity) Mutants of <i>Arabidopsis Thaliana</i>Kumar, Neela Shiva 12 August 2008 (has links)
No description available.
|
10 |
Cellular mechanisms of gravitropism in ARG1 (altered response to gravity) mutants of Arabidopsis thalianaKumar, Neela Shiva. January 2008 (has links)
Thesis (Ph. D.)--Miami University, Dept. of Botany, 2008. / Title from second page of PDF document. Includes bibliographical references.
|
Page generated in 0.0717 seconds